Fan Bai;Ran Wei;Xiaoyu Bai;Dakai Jin;Xianghua Ye;Le Lu;Ke Yan;Max Q.-H. Meng
{"title":"DistAL: A Domain-Shift Active Learning Framework With Transferable Feature Learning for Lesion Detection","authors":"Fan Bai;Ran Wei;Xiaoyu Bai;Dakai Jin;Xianghua Ye;Le Lu;Ke Yan;Max Q.-H. Meng","doi":"10.1109/TMI.2025.3558861","DOIUrl":null,"url":null,"abstract":"Deep learning has demonstrated exceptional performance in medical image analysis, but its effectiveness degrades significantly when applied to different medical centers due to domain shifts. Lesion detection, a critical task in medical imaging, is particularly impacted by this challenge due to the diversity and complexity of lesions, which can arise from different organs, diseases, imaging devices, and other factors. While collecting data and labels from target domains is a feasible solution, annotating medical images is often tedious, expensive, and requires professionals. To address this problem, we combine active learning with domain-invariant feature learning. We propose a Domain-shift Active Learning (DistAL) framework, which includes a transferable feature learning algorithm and a hybrid sample selection strategy. Feature learning incorporates contrastive-consistency training to learn discriminative and domain-invariant features. The sample selection strategy is called RUDY, which jointly considers Representativeness, Uncertainty, and DiversitY. Its goal is to select samples from the unlabeled target domain for cost-effective annotation. It first selects representative samples to deal with domain shift, as well as uncertain ones to improve class separability, and then leverages K-means++ initialization to remove redundant candidates to achieve diversity. We evaluate our method for the task of lesion detection. By selecting only 1.7% samples from the target domain to annotate, DistAL achieves comparable performance to the method trained with all target labels. It outperforms other AL methods in five experiments on eight datasets collected from different hospitals, using different imaging protocols, annotation conventions, and etiologies.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 7","pages":"3038-3050"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964759/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has demonstrated exceptional performance in medical image analysis, but its effectiveness degrades significantly when applied to different medical centers due to domain shifts. Lesion detection, a critical task in medical imaging, is particularly impacted by this challenge due to the diversity and complexity of lesions, which can arise from different organs, diseases, imaging devices, and other factors. While collecting data and labels from target domains is a feasible solution, annotating medical images is often tedious, expensive, and requires professionals. To address this problem, we combine active learning with domain-invariant feature learning. We propose a Domain-shift Active Learning (DistAL) framework, which includes a transferable feature learning algorithm and a hybrid sample selection strategy. Feature learning incorporates contrastive-consistency training to learn discriminative and domain-invariant features. The sample selection strategy is called RUDY, which jointly considers Representativeness, Uncertainty, and DiversitY. Its goal is to select samples from the unlabeled target domain for cost-effective annotation. It first selects representative samples to deal with domain shift, as well as uncertain ones to improve class separability, and then leverages K-means++ initialization to remove redundant candidates to achieve diversity. We evaluate our method for the task of lesion detection. By selecting only 1.7% samples from the target domain to annotate, DistAL achieves comparable performance to the method trained with all target labels. It outperforms other AL methods in five experiments on eight datasets collected from different hospitals, using different imaging protocols, annotation conventions, and etiologies.