{"title":"Laser In Situ Synthesis of Wide Bandgap Tunable Perovskite and Its Application in Micro-LEDs","authors":"Rongrong Xu, Qianxi Yin, Junyi You, Xiaoting Wang, Mulin Li, Xianliang Huang, Jun Chen, Haibo Zeng","doi":"10.1002/adom.202403132","DOIUrl":null,"url":null,"abstract":"<p>Laser patterning of perovskite is a novel technology with the advantages of high speed, programmability, and maskless, which is ideal for fabricating micro light-emitting diodes (micro-LED) color conversion layers (CCL). This work reports a method for laser in situ synthesis of wide bandgap tunable perovskite with an emission spectrum from 475 to 667 nm. Based on the photonic effect of continuous wave (CW) laser and the thermal quenching phenomenon of perovskite, ultra-high precision patterning with a minimum linewidth of 750 nm and a maximum dot-pixel per inch (PPI) of 5684 is achieved. More importantly, significant improvements in perovskite stability and integration of red-green dual-color dot arrays are achieved through in-depth studies of polymer matrices and precursor solvents. The red-green dual-color integrated dot arrays using blue micro-LED chips, which is a great impetus to the research of micro-LED full-color displays, are also successfully excited.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 11","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403132","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser patterning of perovskite is a novel technology with the advantages of high speed, programmability, and maskless, which is ideal for fabricating micro light-emitting diodes (micro-LED) color conversion layers (CCL). This work reports a method for laser in situ synthesis of wide bandgap tunable perovskite with an emission spectrum from 475 to 667 nm. Based on the photonic effect of continuous wave (CW) laser and the thermal quenching phenomenon of perovskite, ultra-high precision patterning with a minimum linewidth of 750 nm and a maximum dot-pixel per inch (PPI) of 5684 is achieved. More importantly, significant improvements in perovskite stability and integration of red-green dual-color dot arrays are achieved through in-depth studies of polymer matrices and precursor solvents. The red-green dual-color integrated dot arrays using blue micro-LED chips, which is a great impetus to the research of micro-LED full-color displays, are also successfully excited.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.