Steve Cruz, Katarina Doctor, Christopher Funk, Walter Scheirer
{"title":"Open issues in open world learning","authors":"Steve Cruz, Katarina Doctor, Christopher Funk, Walter Scheirer","doi":"10.1002/aaai.70001","DOIUrl":null,"url":null,"abstract":"<p>Meaningful progress has been made in open world learning (OWL), enhancing the ability of agents to detect, characterize, and incrementally learn novelty in dynamic environments. However, novelty remains a persistent challenge for agents relying on state-of-the-art learning algorithms. This article considers the current state of OWL, drawing on insights from a recent DARPA research program on this topic. We identify open issues that impede further advancements spanning theory, design, and evaluation. In particular, we emphasize the challenges posed by dynamic scenarios that are crucial to understand for ensuring the viability of agents designed for real-world environments. The article provides suggestions for setting a new research agenda that effectively addresses these open issues.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.70001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Meaningful progress has been made in open world learning (OWL), enhancing the ability of agents to detect, characterize, and incrementally learn novelty in dynamic environments. However, novelty remains a persistent challenge for agents relying on state-of-the-art learning algorithms. This article considers the current state of OWL, drawing on insights from a recent DARPA research program on this topic. We identify open issues that impede further advancements spanning theory, design, and evaluation. In particular, we emphasize the challenges posed by dynamic scenarios that are crucial to understand for ensuring the viability of agents designed for real-world environments. The article provides suggestions for setting a new research agenda that effectively addresses these open issues.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.