{"title":"Two-Step Adaptive Laboratory Evolution Enhances Osmotolerance in Engineered Escherichia coli for Improved Succinate Biosynthesis","authors":"Yanzhe Shang, Zhengtong Zhu, Junru Sun, Peng Fei, Yuanchan Luo, Hui Wu","doi":"10.1002/biot.70021","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Succinic acid (SA) is a promising platform chemical with broad applications in agricultural, food, and pharmaceutical industries. Microbial production of SA using <i>Escherichia coli</i> typically requires alkaline neutralizers to maintain pH during fermentation, leading to elevated osmotic pressure that severely inhibits SA production. The strain ZZT215, evolved from AFP111 using two-step adaptive laboratory evolution (ALE) strategy, exhibited the improved Na<sup>+</sup> tolerance and SA productivity without further genetic modification. In 5 L bioreactor fermentation, ZZT215 accumulated 87.02 g/L of SA with a productivity at 1.01 g/(L·h), representing 24.9% and 21.7% increases compared to the parent strain AFP111, respectively. Transcriptomic analysis revealed downregulated TCA cycle genes and upregulated ABC transporters, indicating metabolic adaptation to osmotic stress. These findings highlight the potential of multiple-step ALE for engineering robust microbial cell factories for SA and other high-value chemicals.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Succinic acid (SA) is a promising platform chemical with broad applications in agricultural, food, and pharmaceutical industries. Microbial production of SA using Escherichia coli typically requires alkaline neutralizers to maintain pH during fermentation, leading to elevated osmotic pressure that severely inhibits SA production. The strain ZZT215, evolved from AFP111 using two-step adaptive laboratory evolution (ALE) strategy, exhibited the improved Na+ tolerance and SA productivity without further genetic modification. In 5 L bioreactor fermentation, ZZT215 accumulated 87.02 g/L of SA with a productivity at 1.01 g/(L·h), representing 24.9% and 21.7% increases compared to the parent strain AFP111, respectively. Transcriptomic analysis revealed downregulated TCA cycle genes and upregulated ABC transporters, indicating metabolic adaptation to osmotic stress. These findings highlight the potential of multiple-step ALE for engineering robust microbial cell factories for SA and other high-value chemicals.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.