Discovery of a Resonant High-Level Reverse Intersystem Crossing of Hot Exciton from Conventional TTPA Fluorescent Semiconductor and an Attempt on High-Efficiency TTPA-Based OLEDs

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junhong Liu, Jing Chen, Jingjing Wang, Teng Peng, Bo Wang, Yinqiong Zhou, Keyi Zhang, Jun Yang, Feng Chen, Yuanjun Li, Qiang Li, Jinfeng Guo, Xiaoli Chen, Zuhong Xiong
{"title":"Discovery of a Resonant High-Level Reverse Intersystem Crossing of Hot Exciton from Conventional TTPA Fluorescent Semiconductor and an Attempt on High-Efficiency TTPA-Based OLEDs","authors":"Junhong Liu,&nbsp;Jing Chen,&nbsp;Jingjing Wang,&nbsp;Teng Peng,&nbsp;Bo Wang,&nbsp;Yinqiong Zhou,&nbsp;Keyi Zhang,&nbsp;Jun Yang,&nbsp;Feng Chen,&nbsp;Yuanjun Li,&nbsp;Qiang Li,&nbsp;Jinfeng Guo,&nbsp;Xiaoli Chen,&nbsp;Zuhong Xiong","doi":"10.1002/adom.202403105","DOIUrl":null,"url":null,"abstract":"<p>Although high-efficiency 9,10-bis[N,N-di-(p-tolyl)-amino]anthracene (TTPA)-based organic light-emitting diodes (OLEDs) are widely reported, their physical origins of excited states in TTPA are still vague. Herein, using the fingerprint magneto-electroluminescence probing tool, a resonant high-level reverse intersystem-crossing (HL-RISC, S<sub>1, TTPA</sub> ← T<sub>2, TTPA</sub>) of hot-excitons is discovered from the conventional fluorescent TTPA semiconductor whose triplet exciton states are generally ignored in the previous literature. This fascinating HL-RISC channel is well validated by the optical, electric, and magnetic properties of the undoped TTPA-based OLEDs. For TTPA-doped OLEDs, this channel can efficiently occur when triplet energies of the host and the exciton blocking layer are higher than that of T<sub>2, TTPA</sub>. More importantly, an external quantum efficiency (EQE) as high as 10.14% is achieved from the simple emission layer without using any phosphorescent sensitizer, i.e., just by doping the TTPA emitter into the DMAC-DPS host with thermally activated delayed fluorescence property. This high EQE is attributed to fully harvesting singlet and triplet excitons of the device via the simultaneous utilization of the newly-found HL-RISC from TTPA guest and the low-level RISC from DMAC-DPS host. Accordingly, this work paves a novel pathway for designing high-performance fully fluorescent OLEDs with inherent device stability and low-cost superiority.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 11","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403105","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although high-efficiency 9,10-bis[N,N-di-(p-tolyl)-amino]anthracene (TTPA)-based organic light-emitting diodes (OLEDs) are widely reported, their physical origins of excited states in TTPA are still vague. Herein, using the fingerprint magneto-electroluminescence probing tool, a resonant high-level reverse intersystem-crossing (HL-RISC, S1, TTPA ← T2, TTPA) of hot-excitons is discovered from the conventional fluorescent TTPA semiconductor whose triplet exciton states are generally ignored in the previous literature. This fascinating HL-RISC channel is well validated by the optical, electric, and magnetic properties of the undoped TTPA-based OLEDs. For TTPA-doped OLEDs, this channel can efficiently occur when triplet energies of the host and the exciton blocking layer are higher than that of T2, TTPA. More importantly, an external quantum efficiency (EQE) as high as 10.14% is achieved from the simple emission layer without using any phosphorescent sensitizer, i.e., just by doping the TTPA emitter into the DMAC-DPS host with thermally activated delayed fluorescence property. This high EQE is attributed to fully harvesting singlet and triplet excitons of the device via the simultaneous utilization of the newly-found HL-RISC from TTPA guest and the low-level RISC from DMAC-DPS host. Accordingly, this work paves a novel pathway for designing high-performance fully fluorescent OLEDs with inherent device stability and low-cost superiority.

Abstract Image

从传统 TTPA 荧光半导体中发现热激子的共振高电平反向系间交叉,以及对基于 TTPA 的高效 OLED 的尝试
虽然高效的9,10-双[N,N-二-(对苯基)-氨基]蒽(TTPA)基有机发光二极管(oled)被广泛报道,但其在TTPA中激发态的物理起源仍不清楚。本文利用指纹磁电致发光探测工具,从传统的荧光TTPA半导体中发现了热激子的共振高能级反向系统间交叉(HL-RISC, S1, TTPA←T2, TTPA),其三重态在以往的文献中通常被忽略。这个迷人的HL-RISC通道通过未掺杂ttpa基oled的光学,电学和磁性得到了很好的验证。对于掺杂TTPA的oled,当主体和激子阻断层的三重态能量高于T2、TTPA时,该通道可以有效地发生。更重要的是,在没有使用任何磷光敏化剂的情况下,仅将TTPA发射器掺杂到具有热激活延迟荧光特性的DMAC-DPS宿主中,就可以在简单发射层获得高达10.14%的外量子效率(EQE)。这种高EQE归因于通过同时利用来自TTPA guest的新发现的HL-RISC和来自DMAC-DPS主机的低级RISC,充分收获器件的单重态和三重态激子。因此,本工作为设计具有固有器件稳定性和低成本优势的高性能全荧光oled铺平了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信