Nonlocality in the alternating Heisenberg–Ising spin chain: effects of coupling, magnetic field, and temperature

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jia Bao, Haoran Yan, Fangying Song, Bin Guo, Zhaoyu Sun
{"title":"Nonlocality in the alternating Heisenberg–Ising spin chain: effects of coupling, magnetic field, and temperature","authors":"Jia Bao,&nbsp;Haoran Yan,&nbsp;Fangying Song,&nbsp;Bin Guo,&nbsp;Zhaoyu Sun","doi":"10.1007/s11128-025-04730-9","DOIUrl":null,"url":null,"abstract":"<div><p>We explore bipartite and multipartite nonlocality in the alternating Heisenberg–Ising spin chain model, emphasizing the contrasting and complementary roles of the relative coupling strength <span>\\(\\lambda \\)</span> (the ratio of the Ising interaction to the Heisenberg interaction), the external magnetic field <i>h</i>, and the temperature <i>T</i>. Bipartite nonlocality is evaluated using the CHSH inequality, and multipartite nonlocality is assessed through Bell-type inequalities derived from <i>g</i>-grouping model theory. Our results show that <span>\\(\\lambda \\)</span>, <i>h</i>, and <i>T</i> significantly affect nonlocality in distinct ways. Increasing <span>\\(\\lambda \\)</span> suppresses bipartite nonlocality but enhances multipartite nonlocality, highlighting the interaction-specific roles in the system: The Heisenberg interaction primarily governs bipartite nonlocal correlations, whereas the Ising interaction drives multipartite nonlocal correlations. In contrast, both <i>h</i> and <i>T</i> universally suppress bipartite and multipartite nonlocal correlations, irrespective of the interaction type. We also reveal scaling behaviors of nonlocality near the quantum critical points, denoted as <span>\\(\\lambda _{c}\\)</span>, where both bipartite and multipartite nonlocality exhibit clear signatures in their first derivatives. Critical scaling is described by <span>\\(\\lambda _{c}(N) = \\lambda _{c}(\\infty )-aN^{-b}\\)</span>, allowing precise determination of the critical value <span>\\(\\lambda _{c}(\\infty ) = 2\\)</span> in the thermodynamic limit.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04730-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We explore bipartite and multipartite nonlocality in the alternating Heisenberg–Ising spin chain model, emphasizing the contrasting and complementary roles of the relative coupling strength \(\lambda \) (the ratio of the Ising interaction to the Heisenberg interaction), the external magnetic field h, and the temperature T. Bipartite nonlocality is evaluated using the CHSH inequality, and multipartite nonlocality is assessed through Bell-type inequalities derived from g-grouping model theory. Our results show that \(\lambda \), h, and T significantly affect nonlocality in distinct ways. Increasing \(\lambda \) suppresses bipartite nonlocality but enhances multipartite nonlocality, highlighting the interaction-specific roles in the system: The Heisenberg interaction primarily governs bipartite nonlocal correlations, whereas the Ising interaction drives multipartite nonlocal correlations. In contrast, both h and T universally suppress bipartite and multipartite nonlocal correlations, irrespective of the interaction type. We also reveal scaling behaviors of nonlocality near the quantum critical points, denoted as \(\lambda _{c}\), where both bipartite and multipartite nonlocality exhibit clear signatures in their first derivatives. Critical scaling is described by \(\lambda _{c}(N) = \lambda _{c}(\infty )-aN^{-b}\), allowing precise determination of the critical value \(\lambda _{c}(\infty ) = 2\) in the thermodynamic limit.

交替海森堡-伊辛自旋链中的非定域性:耦合、磁场和温度的影响
我们探讨了交变海森堡-伊辛自旋链模型中的双向和多向非局域性,强调了相对耦合强度(伊辛相互作用与海森堡相互作用之比)、外磁场h和温度T的对比和互补作用。双向非局域性是通过CHSH不等式评估的,而多向非局域性则是通过从g-分组模型理论导出的贝尔型不等式评估的。我们的结果表明,\(\lambda \)、h 和 T 会以不同的方式显著影响非位置性。增加 \(\lambda \) 会抑制双向非位置性,但会增强多向非位置性,这凸显了相互作用在系统中的特定作用:海森堡相互作用主要支配双侧非局域相关性,而伊辛相互作用则驱动多侧非局域相关性。与此相反,无论相互作用类型如何,h 和 T 都会普遍抑制双方位和多方位非局域相关性。我们还揭示了量子临界点附近的非局域性缩放行为,表示为 \(\lambda_{c}\),其中双方位和多方位非局域性都在它们的一阶导数中表现出明显的特征。临界缩放是由\(\lambda _{c}(N) = \lambda _{c}(\infty )-aN^{-b}\) 描述的,允许在热力学极限中精确确定临界值\(\lambda _{c}(\infty ) = 2\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信