The inviscid inflow-outflow problem via analyticity

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Igor Kukavica, Wojciech Ożański, Marco Sammartino
{"title":"The inviscid inflow-outflow problem via analyticity","authors":"Igor Kukavica,&nbsp;Wojciech Ożański,&nbsp;Marco Sammartino","doi":"10.1007/s00205-025-02095-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the incompressible Euler equations on an analytic domain <span>\\(\\Omega \\)</span> with a nonhomogeneous boundary condition <span>\\(u\\cdot {\\textsf{n}} = {\\overline{u}}\\cdot {\\textsf{n}}\\)</span> on <span>\\(\\partial \\Omega \\)</span>, where <span>\\({\\overline{u}}\\)</span> is a given divergence-free analytic vector field. We establish the local well-posedness for <i>u</i> in analytic spaces without any compatibility conditions in all space dimensions. We also prove the global well-posedness in the 2D case if <span>\\({\\overline{u}}\\)</span> decays in time sufficiently fast.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02095-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02095-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the incompressible Euler equations on an analytic domain \(\Omega \) with a nonhomogeneous boundary condition \(u\cdot {\textsf{n}} = {\overline{u}}\cdot {\textsf{n}}\) on \(\partial \Omega \), where \({\overline{u}}\) is a given divergence-free analytic vector field. We establish the local well-posedness for u in analytic spaces without any compatibility conditions in all space dimensions. We also prove the global well-posedness in the 2D case if \({\overline{u}}\) decays in time sufficiently fast.

用解析法求解无粘流入流出问题
我们考虑分析域 \(\Omega \)上的不可压缩欧拉方程,其中 \({\overline{u}}\) 是一个给定的无发散分析向量场。我们建立了u在解析空间中的局部好求性,在所有空间维度上不需要任何相容条件。如果 \({\overline{u}}\)在时间上衰减得足够快,我们还证明了二维情况下的全局好求性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信