Online LiDAR-Camera Extrinsic Calibration Using Selected Semantic Features

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ping-Tzu Lin;Ying-Shiuan Huang;Wen-Chieh Lin;Chieh-Chih Wang;Huei-Yung Lin
{"title":"Online LiDAR-Camera Extrinsic Calibration Using Selected Semantic Features","authors":"Ping-Tzu Lin;Ying-Shiuan Huang;Wen-Chieh Lin;Chieh-Chih Wang;Huei-Yung Lin","doi":"10.1109/OJITS.2025.3555574","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles have gained great attention from all walks of life in recent years. The relative position and orientation between sensors often change gradually over time due to vibrations or thermal stress of materials. Thus, online re-calibrating extrinsic parameters periodically is required. In this situation, automatic targetless methods are more preferable as they do not require a calibration target or tedious calibration procedure. In this paper, we propose an online targetless camera-LiDAR extrinsic calibration approach with the help of semantic information. Our method could effectively ameliorate the problem of targetless methods which usually lack robust features and the correspondences. We also propose a feature selection technique to filter out improper feature correspondences by matching the image contours and point cloud projection contours. The experiment results show that our approach is more robust than previous work, and the calibration algorithm is applicable to more scenarios.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"456-464"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944781","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10944781/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous vehicles have gained great attention from all walks of life in recent years. The relative position and orientation between sensors often change gradually over time due to vibrations or thermal stress of materials. Thus, online re-calibrating extrinsic parameters periodically is required. In this situation, automatic targetless methods are more preferable as they do not require a calibration target or tedious calibration procedure. In this paper, we propose an online targetless camera-LiDAR extrinsic calibration approach with the help of semantic information. Our method could effectively ameliorate the problem of targetless methods which usually lack robust features and the correspondences. We also propose a feature selection technique to filter out improper feature correspondences by matching the image contours and point cloud projection contours. The experiment results show that our approach is more robust than previous work, and the calibration algorithm is applicable to more scenarios.
使用选定的语义特征在线激光雷达相机外部标定
近年来,自动驾驶汽车受到了社会各界的广泛关注。由于材料的振动或热应力,传感器之间的相对位置和方向往往随着时间的推移而逐渐改变。因此,需要定期在线重新校准外部参数。在这种情况下,自动无标方法更可取,因为它们不需要校准目标或繁琐的校准程序。本文提出了一种基于语义信息的无目标相机-激光雷达在线外部标定方法。该方法可以有效地改善无目标方法缺乏鲁棒性和对应性的问题。我们还提出了一种特征选择技术,通过匹配图像轮廓和点云投影轮廓来过滤不合适的特征对应。实验结果表明,该方法具有较好的鲁棒性,标定算法适用于更多的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信