Cross-Scale Guidance Integration Transformer for Instance Segmentation in Pathology Images

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Yung-Ming Kuo;Jia-Chun Sheng;Chen-Hsuan Lo;You-Jie Wu;Chun-Rong Huang
{"title":"Cross-Scale Guidance Integration Transformer for Instance Segmentation in Pathology Images","authors":"Yung-Ming Kuo;Jia-Chun Sheng;Chen-Hsuan Lo;You-Jie Wu;Chun-Rong Huang","doi":"10.1109/OJEMB.2025.3555818","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> To assess the degree of adenocarcinoma, pathologists need to manually review pathology images. To reduce their burdens and achieve good inter-observer as well as intra-observer reproducibility, instance segmentation methods can help pathologists quantify shapes of gland cells and provide an automatic solution for computer-assisted grading of adenocarcinoma. However, segmenting individual gland cells of different sizes remains a difficult challenge in computer aided diagnosis. <italic>Method:</i> A novel cross-scale guidance integration transformer is proposed for gland cell instance segmentation. Our network contains a cross-scale guidance integration module to integrate multi-scale features learned from the pathology image. By using the integrated features from different field-of-views, the decoder with mask attention can better segment individual gland cells. <italic>Results:</i> Compared with recent task-specific deep learning methods, our method can achieve state-of-the-art performance in two public gland cell datasets. <italic>Conclusions:</i> By imposing cross-scale encoder information, our method can retrieve accurate gland cell segmentation to assist the pathologists for computer-assisted grading of adenocarcinoma.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"413-419"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10945390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945390/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Goal: To assess the degree of adenocarcinoma, pathologists need to manually review pathology images. To reduce their burdens and achieve good inter-observer as well as intra-observer reproducibility, instance segmentation methods can help pathologists quantify shapes of gland cells and provide an automatic solution for computer-assisted grading of adenocarcinoma. However, segmenting individual gland cells of different sizes remains a difficult challenge in computer aided diagnosis. Method: A novel cross-scale guidance integration transformer is proposed for gland cell instance segmentation. Our network contains a cross-scale guidance integration module to integrate multi-scale features learned from the pathology image. By using the integrated features from different field-of-views, the decoder with mask attention can better segment individual gland cells. Results: Compared with recent task-specific deep learning methods, our method can achieve state-of-the-art performance in two public gland cell datasets. Conclusions: By imposing cross-scale encoder information, our method can retrieve accurate gland cell segmentation to assist the pathologists for computer-assisted grading of adenocarcinoma.
面向病理图像实例分割的跨尺度制导集成变压器
目的:为了评估腺癌的程度,病理学家需要手动检查病理图像。为了减轻他们的负担,实现良好的观察者之间和观察者内部的可重复性,实例分割方法可以帮助病理学家量化腺体细胞的形状,并为计算机辅助的腺癌分级提供自动解决方案。然而,在计算机辅助诊断中,分割不同大小的单个腺体细胞仍然是一个困难的挑战。方法:提出了一种新的跨尺度制导集成变压器,用于腺体细胞实例分割。我们的网络包含一个跨尺度的引导集成模块,以整合从病理图像中学习到的多尺度特征。利用不同视场的综合特征,具有掩模注意的解码器可以更好地分割单个腺体细胞。结果:与最近的特定任务深度学习方法相比,我们的方法可以在两个公共腺体细胞数据集上达到最先进的性能。结论:通过施加跨尺度编码器信息,我们的方法可以获得准确的腺体细胞分割,以帮助病理学家进行腺癌的计算机辅助分级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信