Wang Chen , Binhong Yuan , Dongliang Chen , Yong Hu , Feiyu Wang , Jian Zhang
{"title":"Synchronized identification and localization of defect on the bottom of steel box girders based on a dynamic visual perception system","authors":"Wang Chen , Binhong Yuan , Dongliang Chen , Yong Hu , Feiyu Wang , Jian Zhang","doi":"10.1016/j.compind.2025.104291","DOIUrl":null,"url":null,"abstract":"<div><div>Inspecting the underside of large-span bridges is a major challenge due to the extensive area and inaccessibility. This study developed a system that integrates advanced equipment with intelligent algorithms, designed to achieve precise identification and rapid localization of defects on the underside of bridges. The key components of the system are summarized as follows: (1) The dynamic visual perception system is composed of a perception module, a control and transmission module, and a motion module. It enables automated data collection at any position beneath the bridge structure. (2) A block-based panoramic generation strategy is employed, which uses a spatially ordered block concept to simplify the panorama stitching process and enhance accuracy. (3) Deep learning-driven two-phase synchronous identification and localization method. In the first phase, MobileNetV4 serves as the primary feature representation tool, facilitating the lightweight reconstruction of panoramic images. In the second phase, the YOLOv9 detection framework is employed to perform a precise analysis of the identified defect regions, providing detailed defect information on a localized level. The design of this system significantly enhances the efficiency and accuracy of inspections of large-span bridge undersides, offering robust technical support for bridge health maintenance. Experimental results indicate that the proposed method achieves over 90 % accuracy in defect recognition tasks, alongside millimeter-level precision in localization.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"169 ","pages":"Article 104291"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525000569","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Inspecting the underside of large-span bridges is a major challenge due to the extensive area and inaccessibility. This study developed a system that integrates advanced equipment with intelligent algorithms, designed to achieve precise identification and rapid localization of defects on the underside of bridges. The key components of the system are summarized as follows: (1) The dynamic visual perception system is composed of a perception module, a control and transmission module, and a motion module. It enables automated data collection at any position beneath the bridge structure. (2) A block-based panoramic generation strategy is employed, which uses a spatially ordered block concept to simplify the panorama stitching process and enhance accuracy. (3) Deep learning-driven two-phase synchronous identification and localization method. In the first phase, MobileNetV4 serves as the primary feature representation tool, facilitating the lightweight reconstruction of panoramic images. In the second phase, the YOLOv9 detection framework is employed to perform a precise analysis of the identified defect regions, providing detailed defect information on a localized level. The design of this system significantly enhances the efficiency and accuracy of inspections of large-span bridge undersides, offering robust technical support for bridge health maintenance. Experimental results indicate that the proposed method achieves over 90 % accuracy in defect recognition tasks, alongside millimeter-level precision in localization.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.