Global polynomial synchronization for quaternion-valued T–S fuzzy inertial neural networks via event-triggered control: A polynomial gain method

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jingjing Zhang , Zhouhong Li , Jinde Cao , Mahmoud Abdel-Aty , Xiaofang Meng
{"title":"Global polynomial synchronization for quaternion-valued T–S fuzzy inertial neural networks via event-triggered control: A polynomial gain method","authors":"Jingjing Zhang ,&nbsp;Zhouhong Li ,&nbsp;Jinde Cao ,&nbsp;Mahmoud Abdel-Aty ,&nbsp;Xiaofang Meng","doi":"10.1016/j.chaos.2025.116403","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the global polynomial synchronization for a class of quaternion-valued Takagi–Sugeno fuzzy inertial neural networks based on event-triggered control. Firstly, the paper designs the fuzzy event-triggered controller with a polynomial gain, a unique approach to optimize the event-triggered mechanism. The non-reduced order and non-decomposition methods are applied to maintain computational efficiency without introducing new variables. Then, under static and dynamic event-triggered conditions, the system’s global polynomial synchronization is guaranteed by formulating a suitable delay-free Lyapunov functional and using quaternion properties and inequality techniques. Moreover, rigorous derivation is employed to verify a positive lower bound of any event-triggered interval, concluding that the system does not produce Zeno behavior. Finally, a numerical example and the application of image encryption and decryption are presented to strongly validate the reliability of the model and control mechanism in achieving global polynomial synchronization.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116403"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004163","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the global polynomial synchronization for a class of quaternion-valued Takagi–Sugeno fuzzy inertial neural networks based on event-triggered control. Firstly, the paper designs the fuzzy event-triggered controller with a polynomial gain, a unique approach to optimize the event-triggered mechanism. The non-reduced order and non-decomposition methods are applied to maintain computational efficiency without introducing new variables. Then, under static and dynamic event-triggered conditions, the system’s global polynomial synchronization is guaranteed by formulating a suitable delay-free Lyapunov functional and using quaternion properties and inequality techniques. Moreover, rigorous derivation is employed to verify a positive lower bound of any event-triggered interval, concluding that the system does not produce Zeno behavior. Finally, a numerical example and the application of image encryption and decryption are presented to strongly validate the reliability of the model and control mechanism in achieving global polynomial synchronization.
通过事件触发控制实现四元数值 T-S 模糊惯性神经网络的全局多项式同步:多项式增益法
本文研究了一类基于事件触发控制的四元数值Takagi-Sugeno模糊惯性神经网络的全局多项式同步。首先,设计了具有多项式增益的模糊事件触发控制器,这是优化事件触发机制的一种独特方法。采用非降阶和非分解方法,在不引入新变量的情况下保持计算效率。然后,在静态和动态事件触发条件下,通过构造合适的无延迟Lyapunov泛函,利用四元数性质和不等式技术,保证了系统的全局多项式同步。此外,采用严格的推导验证了任何事件触发区间的正下界,得出系统不产生芝诺行为的结论。最后,通过一个数值算例和图像加解密的应用,验证了该模型和控制机制在实现全局多项式同步方面的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信