Optimal control of interactions between invasive alien and native species in a certain time period with the r-PINN approach

Q3 Mathematics
Yudi Ari Adi , Danang A. Pratama , Maharani A. Bakar , Sugiyarto Surono , Suparman , Agung Budiantoro
{"title":"Optimal control of interactions between invasive alien and native species in a certain time period with the r-PINN approach","authors":"Yudi Ari Adi ,&nbsp;Danang A. Pratama ,&nbsp;Maharani A. Bakar ,&nbsp;Sugiyarto Surono ,&nbsp;Suparman ,&nbsp;Agung Budiantoro","doi":"10.1016/j.rico.2025.100557","DOIUrl":null,"url":null,"abstract":"<div><div>The spread of invasive species poses a significant challenge to native biodiversity and ecosystem stability. An optimal control strategies to minimize the negative impacts of invasive species populations on native species and the ecosystem must be done in order to preserve the diversity in the ecosystem. This study proposes an optimal control framework to mitigate the impact of invasive species by enhancing native species preservation through a reaction–diffusion mathematical model. To solve the system efficiently, a restarting Physics-Informed Neural Network (r-PINN) is employed and benchmarked against the basic PINN. Numerical simulations reveal that r-PINN achieves a reduced training duration of 236.17 s compared to 289.18 s for the basic PINN, representing an 18.32% improvement in computational efficiency. Moreover, r-PINN demonstrates enhanced predictive accuracy, reducing the mean absolute error (MAE) by 4.12%, mean squared error (MSE) training loss by 12.04%, and MSE test loss by 5.11%. These results were validated against the Finite Difference Method (FDM), ensuring correctness of the proposed PINN-based approach. The implementation of the optimal control strategy led to a clear increase in native species populations and effective suppression of invasive species across spatial and temporal domains. Overall, the r-PINN framework offers a reliable and computationally efficient tool for solving nonlinear ecological models involving spatiotemporal control of species populations.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"19 ","pages":"Article 100557"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The spread of invasive species poses a significant challenge to native biodiversity and ecosystem stability. An optimal control strategies to minimize the negative impacts of invasive species populations on native species and the ecosystem must be done in order to preserve the diversity in the ecosystem. This study proposes an optimal control framework to mitigate the impact of invasive species by enhancing native species preservation through a reaction–diffusion mathematical model. To solve the system efficiently, a restarting Physics-Informed Neural Network (r-PINN) is employed and benchmarked against the basic PINN. Numerical simulations reveal that r-PINN achieves a reduced training duration of 236.17 s compared to 289.18 s for the basic PINN, representing an 18.32% improvement in computational efficiency. Moreover, r-PINN demonstrates enhanced predictive accuracy, reducing the mean absolute error (MAE) by 4.12%, mean squared error (MSE) training loss by 12.04%, and MSE test loss by 5.11%. These results were validated against the Finite Difference Method (FDM), ensuring correctness of the proposed PINN-based approach. The implementation of the optimal control strategy led to a clear increase in native species populations and effective suppression of invasive species across spatial and temporal domains. Overall, the r-PINN framework offers a reliable and computationally efficient tool for solving nonlinear ecological models involving spatiotemporal control of species populations.
用 r-PINN 方法优化控制外来入侵物种和本地物种在一定时期内的相互作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信