Classification of global solutions to the obstacle problem in the plane

IF 1.5 1区 数学 Q1 MATHEMATICS
Anthony Salib , Georg S. Weiss
{"title":"Classification of global solutions to the obstacle problem in the plane","authors":"Anthony Salib ,&nbsp;Georg S. Weiss","doi":"10.1016/j.aim.2025.110276","DOIUrl":null,"url":null,"abstract":"<div><div>Global solutions to the obstacle problem were first completely classified in two dimensions by Sakai using complex analysis techniques. Although the complex analysis approach produced a very succinct proof in two dimensions, it left the higher dimensional cases, and even closely related problems in two dimensions, unresolved. A complete classification in dimensions <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> was recently given by Eberle, Figalli and Weiss, forty years after Sakai published his proof. In this paper we give a proof of Sakai's classification result for unbounded coincidence sets in the spirit of the recent proof by Eberle, Figalli and Weiss. Our approach, in particular, avoids the need for complex analysis techniques and offers new perspectives on two-dimensional problems that complex analysis cannot address.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110276"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001744","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Global solutions to the obstacle problem were first completely classified in two dimensions by Sakai using complex analysis techniques. Although the complex analysis approach produced a very succinct proof in two dimensions, it left the higher dimensional cases, and even closely related problems in two dimensions, unresolved. A complete classification in dimensions n3 was recently given by Eberle, Figalli and Weiss, forty years after Sakai published his proof. In this paper we give a proof of Sakai's classification result for unbounded coincidence sets in the spirit of the recent proof by Eberle, Figalli and Weiss. Our approach, in particular, avoids the need for complex analysis techniques and offers new perspectives on two-dimensional problems that complex analysis cannot address.
平面障碍问题的全局解分类
Sakai首先使用复杂分析技术将障碍问题的全局解完全分类为二维。虽然复分析方法在二维上给出了非常简洁的证明,但它没有解决高维的情况,甚至没有解决与二维密切相关的问题。在酒井发表他的证明40年后,Eberle, Figalli和Weiss最近给出了n≥3维的完整分类。本文借鉴Eberle, Figalli和Weiss最近的证明精神,给出了Sakai无界重合集的分类结果的证明。特别是,我们的方法避免了对复杂分析技术的需要,并为复杂分析无法解决的二维问题提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信