{"title":"Measurement-induced asymmetry in bipartite networks","authors":"A. Lowe , E. Medina-Guerra","doi":"10.1016/j.physleta.2025.130526","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an interacting bipartite network through a Bayesian game-theoretic framework and demonstrate that weak measurements introduce an inherent asymmetry that is not present when using standard projective measurements. These asymmetries are revealed in the expected payoff for a Bayesian version of the Prisoner's dilemma, demonstrating that certain advantages can be found for given subsystems depending on the measurements performed in the network. We demonstrate that this setup allows measurement-induced control for one of the respective parties.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"547 ","pages":"Article 130526"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125003068","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an interacting bipartite network through a Bayesian game-theoretic framework and demonstrate that weak measurements introduce an inherent asymmetry that is not present when using standard projective measurements. These asymmetries are revealed in the expected payoff for a Bayesian version of the Prisoner's dilemma, demonstrating that certain advantages can be found for given subsystems depending on the measurements performed in the network. We demonstrate that this setup allows measurement-induced control for one of the respective parties.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.