{"title":"Interaction of half-sandwich Rh(III) ion and some of its complexes with endogenous imidazole derivatives","authors":"Azza A. Hassoon , Attila Szorcsik , Tamás Gajda","doi":"10.1016/j.jinorgbio.2025.112913","DOIUrl":null,"url":null,"abstract":"<div><div>An increasing number of {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup> complexes are reported to possess promising medical, mostly anticancer activities. In parallel, growing interest has also focused on the interactions between {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup>-based metallodrugs and macromolecular components of biological fluids, since the biospeciation of these potential metallodrugs may strongly influence their overall pharmacological properties. Less attention was paid to the interaction of {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup> complexes with low molecular mass (LMM) constituents of biological fluids, which may also have significant impact on their biospeciation. From this point of view, the biogenic imidazole derivatives are the most important, since the primary binding sites of proteins for {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup> cation are the surface histidine groups. Several imidazole containing endogenous LMM components are known, which have relevant concentrations in certain biological fluids, such as plasma. Therefore, here we report systematic solution thermodynamic and solution structural (potentiometric, UV–Vis, ESI-MS and <sup>1</sup>H NMR) study on the interaction of {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup> cation with thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH<sub>2</sub>, <strong>L</strong><sup><strong>1</strong></sup>), carnosine (β-alanyl-histidine, <strong>L</strong><sup><strong>2</strong></sup>), carcinine (β-alanyl-histamine, <strong>L</strong><sup><strong>3</strong></sup>), histidine (<strong>L</strong><sup><strong>4</strong></sup>) and the human growth modulator tripeptide GHK (Gly-His-Lys, <strong>L</strong><sup><strong>5</strong></sup>). The results indicate, that these biogenic ligands, especially histidine and GHK, possess very high binding ability towards {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup> cation, higher than for the well-known histidine-peptide binder copper(II). In addition, we also studied the interaction of two simple [Rh(η<sup>5</sup>-Cp*)(A)Cl]<sup>+</sup> complexes (where A = 2,2′-bipyridyl (<strong>bpy</strong>) or ethylenediamine (<strong>en</strong>)), as mimics of potentially anticancer compounds, with the above listed endogenous imidazole derivatives. Beside the formation of ternary [Rh(η<sup>5</sup>-Cp*)(A)(L)] complexes, histidine and GHK, having exceptionally high {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup> binding ability, are also able to displace <strong>en</strong> or <strong>bpy</strong> from the coordination sphere of Rh(III). Moreover, histidine and GHK successfully compete even with human serum albumin under near physiological conditions, and thus may have fundamental effect on the blood transport and biodistribution of any {Rh(η<sup>5</sup>-Cp*)}<sup>2+</sup>-based bioactive compounds.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"270 ","pages":"Article 112913"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425000935","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An increasing number of {Rh(η5-Cp*)}2+ complexes are reported to possess promising medical, mostly anticancer activities. In parallel, growing interest has also focused on the interactions between {Rh(η5-Cp*)}2+-based metallodrugs and macromolecular components of biological fluids, since the biospeciation of these potential metallodrugs may strongly influence their overall pharmacological properties. Less attention was paid to the interaction of {Rh(η5-Cp*)}2+ complexes with low molecular mass (LMM) constituents of biological fluids, which may also have significant impact on their biospeciation. From this point of view, the biogenic imidazole derivatives are the most important, since the primary binding sites of proteins for {Rh(η5-Cp*)}2+ cation are the surface histidine groups. Several imidazole containing endogenous LMM components are known, which have relevant concentrations in certain biological fluids, such as plasma. Therefore, here we report systematic solution thermodynamic and solution structural (potentiometric, UV–Vis, ESI-MS and 1H NMR) study on the interaction of {Rh(η5-Cp*)}2+ cation with thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2, L1), carnosine (β-alanyl-histidine, L2), carcinine (β-alanyl-histamine, L3), histidine (L4) and the human growth modulator tripeptide GHK (Gly-His-Lys, L5). The results indicate, that these biogenic ligands, especially histidine and GHK, possess very high binding ability towards {Rh(η5-Cp*)}2+ cation, higher than for the well-known histidine-peptide binder copper(II). In addition, we also studied the interaction of two simple [Rh(η5-Cp*)(A)Cl]+ complexes (where A = 2,2′-bipyridyl (bpy) or ethylenediamine (en)), as mimics of potentially anticancer compounds, with the above listed endogenous imidazole derivatives. Beside the formation of ternary [Rh(η5-Cp*)(A)(L)] complexes, histidine and GHK, having exceptionally high {Rh(η5-Cp*)}2+ binding ability, are also able to displace en or bpy from the coordination sphere of Rh(III). Moreover, histidine and GHK successfully compete even with human serum albumin under near physiological conditions, and thus may have fundamental effect on the blood transport and biodistribution of any {Rh(η5-Cp*)}2+-based bioactive compounds.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.