Saman Kazemi , Reza Zarghami , Navid Mostoufi , Rahmat Sotudeh-Gharebagh , Riyadh I. Al-Raoush
{"title":"A novel ML-DEM algorithm for predicting particle motion in rotary drums","authors":"Saman Kazemi , Reza Zarghami , Navid Mostoufi , Rahmat Sotudeh-Gharebagh , Riyadh I. Al-Raoush","doi":"10.1016/j.enganabound.2025.106258","DOIUrl":null,"url":null,"abstract":"<div><div>The discrete element method (DEM) is a widely used approach for studying the behavior of particles in industrial equipment, including rotary drums. Although DEM is highly accurate and efficient, it suffers from the computational cost in simulations. The primary objective of this research is to reduce the computational costs of DEM by introducing a novel machine learning (ML) approach based on a deep neural network for predicting particle behavior in rotary drums. The proposed approach utilizes a continuous convolution operator in a neural network. To evaluate its effectiveness, the results of the proposed ML-DEM approach were compared quantitatively and qualitatively with the experimental data and the conventional DEM results. It was shown that in addition to its high accuracy, the proposed approach reduces the computational costs by approximately 35 % and 65 % compared to the conventional DEM simulations on GPU and CPU (with 8 processors), respectively. Furthermore, to ensure the comprehensive and independent validation of the proposed algorithm, the study investigated the effects of various parameters such as drum rotational speed and fill ratio on lateral entropy-based mixing, circulation time, and velocity profile in the active layer. The results were then compared with those obtained using the conventional DEM and found to be in good agreement. This new algorithm can serve as a starting point for reducing computational costs in simulating particle motion in granular systems.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"177 ","pages":"Article 106258"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725001468","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discrete element method (DEM) is a widely used approach for studying the behavior of particles in industrial equipment, including rotary drums. Although DEM is highly accurate and efficient, it suffers from the computational cost in simulations. The primary objective of this research is to reduce the computational costs of DEM by introducing a novel machine learning (ML) approach based on a deep neural network for predicting particle behavior in rotary drums. The proposed approach utilizes a continuous convolution operator in a neural network. To evaluate its effectiveness, the results of the proposed ML-DEM approach were compared quantitatively and qualitatively with the experimental data and the conventional DEM results. It was shown that in addition to its high accuracy, the proposed approach reduces the computational costs by approximately 35 % and 65 % compared to the conventional DEM simulations on GPU and CPU (with 8 processors), respectively. Furthermore, to ensure the comprehensive and independent validation of the proposed algorithm, the study investigated the effects of various parameters such as drum rotational speed and fill ratio on lateral entropy-based mixing, circulation time, and velocity profile in the active layer. The results were then compared with those obtained using the conventional DEM and found to be in good agreement. This new algorithm can serve as a starting point for reducing computational costs in simulating particle motion in granular systems.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.