Bias-variance decomposition knowledge distillation for medical image segmentation

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiangchun Yu , Longxiang Teng , Zhongjian Duan , Dingwen Zhang , Wei Pang , Miaomiao Liang , Jian Zheng , Liujin Qiu , Qing Xu
{"title":"Bias-variance decomposition knowledge distillation for medical image segmentation","authors":"Xiangchun Yu ,&nbsp;Longxiang Teng ,&nbsp;Zhongjian Duan ,&nbsp;Dingwen Zhang ,&nbsp;Wei Pang ,&nbsp;Miaomiao Liang ,&nbsp;Jian Zheng ,&nbsp;Liujin Qiu ,&nbsp;Qing Xu","doi":"10.1016/j.neucom.2025.130230","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge distillation essentially maximizes the mutual information between teacher and student networks. Typically, a variational distribution is introduced to maximize the variational lower bound. However, the heteroscedastic noises derived from this distribution are often unstable, leading to unreliable data-uncertainty modeling. Our research identifies that bias-variance coupling in knowledge distillation causes this instability. We thus propose Bias-variance dEcomposition kNowledge dIstillatioN (BENIN) approach. Initially, we use bias-variance decomposition to decouple these components. Subsequently, we design a lightweight Feature Frequency Expectation Estimation Module (FF-EEM) to estimate the student's prediction expectation, which helps compute bias and variance. Variance learning measures data uncertainty in the teacher's prediction. A balance factor addresses the bias-variance dilemma. Lastly, the bias-variance decomposition distillation loss enables the student to learn valuable knowledge while reducing noise. Experiments on Synapse and Lits17 medical-image-segmentation datasets validate BENIN's effectiveness. FF-EEM also mitigates high-frequency noise from high mask rates, enhancing data-uncertainty estimation and visualization. Our code is available at <span><span>https://github.com/duanzhongjian/BENIN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130230"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009026","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge distillation essentially maximizes the mutual information between teacher and student networks. Typically, a variational distribution is introduced to maximize the variational lower bound. However, the heteroscedastic noises derived from this distribution are often unstable, leading to unreliable data-uncertainty modeling. Our research identifies that bias-variance coupling in knowledge distillation causes this instability. We thus propose Bias-variance dEcomposition kNowledge dIstillatioN (BENIN) approach. Initially, we use bias-variance decomposition to decouple these components. Subsequently, we design a lightweight Feature Frequency Expectation Estimation Module (FF-EEM) to estimate the student's prediction expectation, which helps compute bias and variance. Variance learning measures data uncertainty in the teacher's prediction. A balance factor addresses the bias-variance dilemma. Lastly, the bias-variance decomposition distillation loss enables the student to learn valuable knowledge while reducing noise. Experiments on Synapse and Lits17 medical-image-segmentation datasets validate BENIN's effectiveness. FF-EEM also mitigates high-frequency noise from high mask rates, enhancing data-uncertainty estimation and visualization. Our code is available at https://github.com/duanzhongjian/BENIN.
知识提炼本质上是最大化教师和学生网络之间的相互信息。通常,为了最大化变异下限,会引入一个变异分布。然而,从该分布中得出的异方差噪声往往不稳定,从而导致不可靠的数据不确定性建模。我们的研究发现,知识蒸馏中的偏差-方差耦合导致了这种不稳定性。因此,我们提出了偏差-方差分解知识蒸馏(BENIN)方法。首先,我们使用偏差-方差分解来解耦这些组件。随后,我们设计了一个轻量级的特征频率期望估计模块(FF-EEM)来估计学生的预测期望,这有助于计算偏差和方差。方差学习测量教师预测中的数据不确定性。平衡因子可解决偏差-方差两难问题。最后,偏差-方差分解蒸馏损失能让学生学到有价值的知识,同时减少噪音。在 Synapse 和 Lits17 医学影像分割数据集上的实验验证了 BENIN 的有效性。FF-EEM 还能降低高掩码率带来的高频噪声,增强数据不确定性估计和可视化。我们的代码见 https://github.com/duanzhongjian/BENIN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信