{"title":"Bias-variance decomposition knowledge distillation for medical image segmentation","authors":"Xiangchun Yu , Longxiang Teng , Zhongjian Duan , Dingwen Zhang , Wei Pang , Miaomiao Liang , Jian Zheng , Liujin Qiu , Qing Xu","doi":"10.1016/j.neucom.2025.130230","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge distillation essentially maximizes the mutual information between teacher and student networks. Typically, a variational distribution is introduced to maximize the variational lower bound. However, the heteroscedastic noises derived from this distribution are often unstable, leading to unreliable data-uncertainty modeling. Our research identifies that bias-variance coupling in knowledge distillation causes this instability. We thus propose Bias-variance dEcomposition kNowledge dIstillatioN (BENIN) approach. Initially, we use bias-variance decomposition to decouple these components. Subsequently, we design a lightweight Feature Frequency Expectation Estimation Module (FF-EEM) to estimate the student's prediction expectation, which helps compute bias and variance. Variance learning measures data uncertainty in the teacher's prediction. A balance factor addresses the bias-variance dilemma. Lastly, the bias-variance decomposition distillation loss enables the student to learn valuable knowledge while reducing noise. Experiments on Synapse and Lits17 medical-image-segmentation datasets validate BENIN's effectiveness. FF-EEM also mitigates high-frequency noise from high mask rates, enhancing data-uncertainty estimation and visualization. Our code is available at <span><span>https://github.com/duanzhongjian/BENIN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130230"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009026","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge distillation essentially maximizes the mutual information between teacher and student networks. Typically, a variational distribution is introduced to maximize the variational lower bound. However, the heteroscedastic noises derived from this distribution are often unstable, leading to unreliable data-uncertainty modeling. Our research identifies that bias-variance coupling in knowledge distillation causes this instability. We thus propose Bias-variance dEcomposition kNowledge dIstillatioN (BENIN) approach. Initially, we use bias-variance decomposition to decouple these components. Subsequently, we design a lightweight Feature Frequency Expectation Estimation Module (FF-EEM) to estimate the student's prediction expectation, which helps compute bias and variance. Variance learning measures data uncertainty in the teacher's prediction. A balance factor addresses the bias-variance dilemma. Lastly, the bias-variance decomposition distillation loss enables the student to learn valuable knowledge while reducing noise. Experiments on Synapse and Lits17 medical-image-segmentation datasets validate BENIN's effectiveness. FF-EEM also mitigates high-frequency noise from high mask rates, enhancing data-uncertainty estimation and visualization. Our code is available at https://github.com/duanzhongjian/BENIN.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.