Nested fifth root radical identities from elliptic curves

Joseph Tonien
{"title":"Nested fifth root radical identities from elliptic curves","authors":"Joseph Tonien","doi":"10.1016/j.jaca.2025.100032","DOIUrl":null,"url":null,"abstract":"<div><div>Ramanujan discovered the following elegant identity involving cube roots:<span><span><span><math><msqrt><mrow><mi>m</mi><mroot><mrow><mn>4</mn><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mi>n</mi><mroot><mrow><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot></mrow></msqrt><mo>=</mo><mo>±</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mroot><mrow><msup><mrow><mo>(</mo><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mroot><mrow><mn>4</mn><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo><mo>(</mo><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></mroot><mo>−</mo><mroot><mrow><mn>2</mn><msup><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo><mo>.</mo></math></span></span></span></div><div>The goal of this paper is to derive nested fifth root radical identities in the form of<span><span><span><math><msqrt><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mroot><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mroot><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot></mrow></msqrt><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>5</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>.</mo></math></span></span></span> We show that these identities can be derived from a specific family of elliptic curves. Furthermore, we include the SageMath code for computing these expressions.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"13 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827725000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ramanujan discovered the following elegant identity involving cube roots:m4(m2n)3+n4m+n3=±13((4m+n)23+4(m2n)(4m+n)32(m2n)23).
The goal of this paper is to derive nested fifth root radical identities in the form ofP1Q15+P2Q25=p1q15+p2q25+p3q35+p4q45+p5q55. We show that these identities can be derived from a specific family of elliptic curves. Furthermore, we include the SageMath code for computing these expressions.
椭圆曲线的嵌套五根根恒等式
拉马努金发现了一个简洁的立方根等式:m4(m−2n)3+n4m+n3=±13((4m+n)23+4(m−2n)(4m+n)3−2(m−2n)23)。本文的目标是推导出嵌套的五根根恒等式,其形式为p1q15+ P2Q25=p1q15+ P2Q25 +p3q35+p4q45+p5q55。我们证明了这些恒等式可以从特定的椭圆曲线族中导出。此外,我们还包含了用于计算这些表达式的SageMath代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信