Md Fahim Sikder , Resmi Ramachandranpillai , Fredrik Heintz
{"title":"TransFusion: Generating long, high fidelity time series using diffusion models with transformers","authors":"Md Fahim Sikder , Resmi Ramachandranpillai , Fredrik Heintz","doi":"10.1016/j.mlwa.2025.100652","DOIUrl":null,"url":null,"abstract":"<div><div>The generation of high-quality, long-sequenced time-series data is essential due to its wide range of applications. In the past, standalone Recurrent and Convolutional Neural Network-based Generative Adversarial Networks (GAN) were used to synthesize time-series data. However, they are inadequate for generating long sequences of time-series data due to limitations in the architecture, such as difficulties in capturing long-range dependencies, limited temporal coherence, and scalability challenges. Furthermore, GANs are well known for their training instability and mode collapse problem. To address this, we propose <em>TransFusion</em>, a diffusion, and transformers-based generative model to generate high-quality long-sequence time-series data. We extended the sequence length to 384, surpassing the previous limit, and successfully generated high-quality synthetic data. Also, we introduce two evaluation metrics to evaluate the quality of the synthetic data as well as its predictive characteristics. <em>TransFusion</em> is evaluated using a diverse set of visual and empirical metrics, consistently outperforming the previous state-of-the-art by a significant margin.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100652"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of high-quality, long-sequenced time-series data is essential due to its wide range of applications. In the past, standalone Recurrent and Convolutional Neural Network-based Generative Adversarial Networks (GAN) were used to synthesize time-series data. However, they are inadequate for generating long sequences of time-series data due to limitations in the architecture, such as difficulties in capturing long-range dependencies, limited temporal coherence, and scalability challenges. Furthermore, GANs are well known for their training instability and mode collapse problem. To address this, we propose TransFusion, a diffusion, and transformers-based generative model to generate high-quality long-sequence time-series data. We extended the sequence length to 384, surpassing the previous limit, and successfully generated high-quality synthetic data. Also, we introduce two evaluation metrics to evaluate the quality of the synthetic data as well as its predictive characteristics. TransFusion is evaluated using a diverse set of visual and empirical metrics, consistently outperforming the previous state-of-the-art by a significant margin.