{"title":"An infinite hidden Markov model with GARCH for short-term interest rates","authors":"Chenxing Li , Qiao Yang","doi":"10.1016/j.frl.2025.107294","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel Bayesian time series model that combines the nonparametric features of an infinite hidden Markov model with the volatility persistence captured by the GARCH framework, to effectively model and forecast short-term interest rates. When applied to US 3-month Treasury bill rates, the GARCH-IHMM reveals both structural and persistent changes in volatility, thereby enhancing the accuracy of density forecasts compared to existing benchmark models. Out-of-sample evaluations demonstrate the superior performance of our model in density forecasts and in capturing volatility dynamics due to its adaptivity to different macroeconomic environments.</div></div>","PeriodicalId":12167,"journal":{"name":"Finance Research Letters","volume":"80 ","pages":"Article 107294"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance Research Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1544612325005574","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel Bayesian time series model that combines the nonparametric features of an infinite hidden Markov model with the volatility persistence captured by the GARCH framework, to effectively model and forecast short-term interest rates. When applied to US 3-month Treasury bill rates, the GARCH-IHMM reveals both structural and persistent changes in volatility, thereby enhancing the accuracy of density forecasts compared to existing benchmark models. Out-of-sample evaluations demonstrate the superior performance of our model in density forecasts and in capturing volatility dynamics due to its adaptivity to different macroeconomic environments.
期刊介绍:
Finance Research Letters welcomes submissions across all areas of finance, aiming for rapid publication of significant new findings. The journal particularly encourages papers that provide insight into the replicability of established results, examine the cross-national applicability of previous findings, challenge existing methodologies, or demonstrate methodological contingencies.
Papers are invited in the following areas:
Actuarial studies
Alternative investments
Asset Pricing
Bankruptcy and liquidation
Banks and other Depository Institutions
Behavioral and experimental finance
Bibliometric and Scientometric studies of finance
Capital budgeting and corporate investment
Capital markets and accounting
Capital structure and payout policy
Commodities
Contagion, crises and interdependence
Corporate governance
Credit and fixed income markets and instruments
Derivatives
Emerging markets
Energy Finance and Energy Markets
Financial Econometrics
Financial History
Financial intermediation and money markets
Financial markets and marketplaces
Financial Mathematics and Econophysics
Financial Regulation and Law
Forecasting
Frontier market studies
International Finance
Market efficiency, event studies
Mergers, acquisitions and the market for corporate control
Micro Finance Institutions
Microstructure
Non-bank Financial Institutions
Personal Finance
Portfolio choice and investing
Real estate finance and investing
Risk
SME, Family and Entrepreneurial Finance