{"title":"Adjoint lattice kinetic scheme for topology optimization in fluid problems","authors":"Yuta Tanabe , Kentaro Yaji , Kuniharu Ushijima","doi":"10.1016/j.jcp.2025.114001","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a topology optimization method for non-thermal and thermal fluid problems using the Lattice Kinetic Scheme (LKS). LKS, which is derived from the Lattice Boltzmann Method (LBM), requires only macroscopic values, such as fluid velocity and pressure, whereas LBM requires velocity distribution functions, thereby reducing memory requirements. The proposed method computes design sensitivities based on the adjoint variable method, and the adjoint equation is solved in the same manner as LKS; thus, we refer to it as the <em>Adjoint Lattice Kinetic Scheme</em> (ALKS). A key contribution of this method is the proposed approximate treatment of boundary conditions for the adjoint equation, which is challenging to apply directly due to the characteristics of LKS boundary conditions. We demonstrate numerical examples for steady and unsteady problems involving non-thermal and thermal fluids, and the results are physically meaningful and consistent with previous research, exhibiting similar trends in parameter dependencies, such as the Reynolds number. Furthermore, the proposed method reduces memory usage by up to 75% compared to the conventional LBM in an unsteady thermal fluid problem.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"533 ","pages":"Article 114001"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002840","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a topology optimization method for non-thermal and thermal fluid problems using the Lattice Kinetic Scheme (LKS). LKS, which is derived from the Lattice Boltzmann Method (LBM), requires only macroscopic values, such as fluid velocity and pressure, whereas LBM requires velocity distribution functions, thereby reducing memory requirements. The proposed method computes design sensitivities based on the adjoint variable method, and the adjoint equation is solved in the same manner as LKS; thus, we refer to it as the Adjoint Lattice Kinetic Scheme (ALKS). A key contribution of this method is the proposed approximate treatment of boundary conditions for the adjoint equation, which is challenging to apply directly due to the characteristics of LKS boundary conditions. We demonstrate numerical examples for steady and unsteady problems involving non-thermal and thermal fluids, and the results are physically meaningful and consistent with previous research, exhibiting similar trends in parameter dependencies, such as the Reynolds number. Furthermore, the proposed method reduces memory usage by up to 75% compared to the conventional LBM in an unsteady thermal fluid problem.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.