{"title":"Universality of L-functions over function fields","authors":"Julio C. Andrade , Steven M. Gonek , Yoonbok Lee","doi":"10.1016/j.aim.2025.110265","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that Dirichlet <em>L</em>-functions corresponding to Dirichlet characters for <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> with <em>q</em> odd are universal in the following sense. Let <span><math><mi>Q</mi></math></span> denote either the set of all prime polynomials <em>Q</em> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, or the set of all polynomials <em>Q</em> that are products of a fixed set of prime polynomials <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. Let <em>U</em> be the open rectangle with vertices <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>i</mi><mi>α</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>i</mi><mi>α</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>i</mi><mi>β</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>i</mi><mi>β</mi></math></span>, where <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo><</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo>−</mo><mi>α</mi><mo>≤</mo><mn>2</mn><mi>π</mi><mo>/</mo><mo>(</mo><mn>3</mn><mi>log</mi><mo></mo><mi>q</mi><mo>)</mo></math></span>. Suppose also that <em>C</em> is a compact set in <em>U</em> with positive Lebesgue measure whose complement is connected and that <em>f</em> is a prescribed continuous, nonvanishing function on <em>C</em> that is analytic on the interior of <em>C</em>. Then if <span><math><mi>Q</mi><mo>∈</mo><mi>Q</mi></math></span> is of high enough degree, a positive proportion of the <em>L</em>-functions with characters to this modulus approximate <em>f</em> arbitrarily closely. This extends for the first time (as far as we know) the notion of universality of <em>L</em>-functions over number fields to the function field setting.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"471 ","pages":"Article 110265"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500163X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that Dirichlet L-functions corresponding to Dirichlet characters for with q odd are universal in the following sense. Let denote either the set of all prime polynomials Q in , or the set of all polynomials Q that are products of a fixed set of prime polynomials . Let U be the open rectangle with vertices , where and . Suppose also that C is a compact set in U with positive Lebesgue measure whose complement is connected and that f is a prescribed continuous, nonvanishing function on C that is analytic on the interior of C. Then if is of high enough degree, a positive proportion of the L-functions with characters to this modulus approximate f arbitrarily closely. This extends for the first time (as far as we know) the notion of universality of L-functions over number fields to the function field setting.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.