{"title":"The inverse limit topology and profinite descent on Picard groups in K(n)-local homotopy theory","authors":"Guchuan Li , Ningchuan Zhang","doi":"10.1016/j.aim.2025.110274","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study profinite descent theory for Picard groups in <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local homotopy theory through their inverse limit topology. Building upon Burklund's result on the multiplicative structures of generalized Moore spectra, we prove that the module category over a <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local commutative ring spectrum is equivalent to the limit of its base changes by a tower of generalized Moore spectra of type <em>n</em>. As a result, the <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local Picard groups are endowed with a natural inverse limit topology. This topology allows us to identify the entire <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-pages of a descent spectral sequence for Picard spaces of <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local profinite Galois extensions.</div><div>Our main examples are <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local Picard groups of homotopy fixed points <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi><mi>G</mi></mrow></msubsup></math></span> of the Morava <em>E</em>-theory <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for all closed subgroups <em>G</em> of the Morava stabilizer group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> case has been studied by Heard and Mor. At height 1, we compute Picard groups of <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>h</mi><mi>G</mi></mrow></msubsup></math></span> for all closed subgroups <em>G</em> of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math></span> at all primes as a Mackey functor.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"471 ","pages":"Article 110274"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001720","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study profinite descent theory for Picard groups in -local homotopy theory through their inverse limit topology. Building upon Burklund's result on the multiplicative structures of generalized Moore spectra, we prove that the module category over a -local commutative ring spectrum is equivalent to the limit of its base changes by a tower of generalized Moore spectra of type n. As a result, the -local Picard groups are endowed with a natural inverse limit topology. This topology allows us to identify the entire and -pages of a descent spectral sequence for Picard spaces of -local profinite Galois extensions.
Our main examples are -local Picard groups of homotopy fixed points of the Morava E-theory for all closed subgroups G of the Morava stabilizer group . The case has been studied by Heard and Mor. At height 1, we compute Picard groups of for all closed subgroups G of at all primes as a Mackey functor.
本文利用Picard群的逆极限拓扑,研究了K(n)-局部同伦理论中Picard群的无限下降理论。基于Burklund关于广义摩尔谱乘性结构的结论,证明了K(n)局部可交换环谱上的模范畴等价于其基变化的极限,即n型广义摩尔谱塔,从而使K(n)局部Picard群具有自然逆极限拓扑。这种拓扑结构允许我们识别K(n)局部无限伽罗瓦扩展的皮卡德空间的整个下降谱序列的E1和e2页。我们的主要例子是Morava e -理论En的所有闭子群G对Morava稳定群Gn的同伦不动点EnhG的K(n)局部Picard群。赫德和莫尔研究过G=Gn的情况。在高度1处,我们计算了G1= zpx的所有闭子群G在所有质数处作为麦基函子的E1hG的Picard群。
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.