Mevlut Dogan, Wania Wolff, Deepthy Maria Mootheril, Thomas Pfeifer, Alexander Dorn
{"title":"Electron impact single and double ionization and dissociation: revisiting CF4 and CHF3 with an improved experimental method","authors":"Mevlut Dogan, Wania Wolff, Deepthy Maria Mootheril, Thomas Pfeifer, Alexander Dorn","doi":"10.1039/d5cp00746a","DOIUrl":null,"url":null,"abstract":"The absolute total and partial ionization cross sections resulting from electron collisions with fluorinated molecules CF<small><sub>4</sub></small> and CHF<small><sub>3</sub></small> were obtained by recoil-ion momentum spectroscopy with full acceptance for energetic ionic fragments. For absolute normalization the relative-flow technique was applied. The cross sections for single and double ionization as well as for dissociation were measured for electron energies from 20 eV to 1 keV. The data are compared with previous experiments and model calculations. The dissociation channel-specific differences between CF<small><sub>4</sub></small> and CHF<small><sub>3</sub></small> are discussed. The present data are relevant for the evaluation of the electron interaction on these potent greenhouse gases with a high global warming potential in the Earth biosphere and in plasma and other industrial applications.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"6 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00746a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The absolute total and partial ionization cross sections resulting from electron collisions with fluorinated molecules CF4 and CHF3 were obtained by recoil-ion momentum spectroscopy with full acceptance for energetic ionic fragments. For absolute normalization the relative-flow technique was applied. The cross sections for single and double ionization as well as for dissociation were measured for electron energies from 20 eV to 1 keV. The data are compared with previous experiments and model calculations. The dissociation channel-specific differences between CF4 and CHF3 are discussed. The present data are relevant for the evaluation of the electron interaction on these potent greenhouse gases with a high global warming potential in the Earth biosphere and in plasma and other industrial applications.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.