{"title":"High-Efficiency and Stable Perovskite Solar Cells via DL-Methionine-Enhanced Crystallization and Defect Passivation","authors":"Xiaolan Li, Yanwei Xu, Fuxing Chen, Dongxing Lu, Yajun Zhu, Cong Li","doi":"10.1039/d4cp04698f","DOIUrl":null,"url":null,"abstract":"As an emerging photovoltaic technology, perovskite solar cells (PSCs) have become a research hotspot due to their excellent photoelectric conversion efficiency (PCE) and low-cost manufacturing process. Enhancing the crystallization quality of perovskite films and mitigating defects through material engineering is crucial for improving the performance of PSCs. In this study, a naturally occurring amino acid, DL-Methionine, is incorporated as an additive to enhance the crystallization quality and passivate defects in perovskite films. The results show that the appropriate concentration of DL-Methionine additive can not only improve the crystallization kinetics of perovskite but also reduce the defects of perovskite films through its coordination with perovskite ions, thereby reducing defect-assisted recombination. Finally, the optimized PSCs based on the DL-Methionine additive obtained the highest power conversion efficiency of 24.72%, significantly higher than those without the DL-Methionine additive (21.83%). Moreover, the stability of PSCs is significantly improved with the DL-Methionine additive. This work demonstrates the potential of DL-Methionine as an effective passivation agent for high-efficiency and stable PSCs.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04698f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As an emerging photovoltaic technology, perovskite solar cells (PSCs) have become a research hotspot due to their excellent photoelectric conversion efficiency (PCE) and low-cost manufacturing process. Enhancing the crystallization quality of perovskite films and mitigating defects through material engineering is crucial for improving the performance of PSCs. In this study, a naturally occurring amino acid, DL-Methionine, is incorporated as an additive to enhance the crystallization quality and passivate defects in perovskite films. The results show that the appropriate concentration of DL-Methionine additive can not only improve the crystallization kinetics of perovskite but also reduce the defects of perovskite films through its coordination with perovskite ions, thereby reducing defect-assisted recombination. Finally, the optimized PSCs based on the DL-Methionine additive obtained the highest power conversion efficiency of 24.72%, significantly higher than those without the DL-Methionine additive (21.83%). Moreover, the stability of PSCs is significantly improved with the DL-Methionine additive. This work demonstrates the potential of DL-Methionine as an effective passivation agent for high-efficiency and stable PSCs.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.