{"title":"Ta-Ag Coatings on TC4: A Strategy to Leverage Bioelectric Microenvironments for Enhanced Antibacterial Activity","authors":"Yuxin Gong, Xiang Liang, Le Bai, Ming Yu, Xin Yang, Chonghao Yao, Hao Cui, Linyang Xie, Bingheng Lu, Sijia Na, Guangbin Zhao, Junbo Tu, Fangfang Xu","doi":"10.1002/biot.70000","DOIUrl":null,"url":null,"abstract":"<p>Dental implant-related infections are serious complications after surgery that can results in loosening or even complete loss of the implant. Although endogenous electric fields (EEF) play an integral role in the human body, current methods involving external electrical stimulation are invasive and not suitable for clinical application. In this study, we using DC magnetron sputtering, investigates the effects of tantalum-silver (Ta-Ag) coatings on titanium alloy (TC4) surfaces, focusing on their potential to influence EEF that enhances antibacterial activity In this design, Ta-Ag configuration effectively increased the surface potential difference of TC4, and furthermore, promoting Ta/Ag ions release and reducing bacterial adhesion. The study concludes that the Ta-Ag coating, particularly the TT/A implant, promotes a stable EEF, enhancing the long-term antibacterial and osteogenic properties of implants. This work provides a promising strategy for developing advanced implant materials with improved clinical efficacy.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70000","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dental implant-related infections are serious complications after surgery that can results in loosening or even complete loss of the implant. Although endogenous electric fields (EEF) play an integral role in the human body, current methods involving external electrical stimulation are invasive and not suitable for clinical application. In this study, we using DC magnetron sputtering, investigates the effects of tantalum-silver (Ta-Ag) coatings on titanium alloy (TC4) surfaces, focusing on their potential to influence EEF that enhances antibacterial activity In this design, Ta-Ag configuration effectively increased the surface potential difference of TC4, and furthermore, promoting Ta/Ag ions release and reducing bacterial adhesion. The study concludes that the Ta-Ag coating, particularly the TT/A implant, promotes a stable EEF, enhancing the long-term antibacterial and osteogenic properties of implants. This work provides a promising strategy for developing advanced implant materials with improved clinical efficacy.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.