Sepideh Hassanpour Khodaei , Shahnaz Sabetkam , Zeinab Mazloumi , Khadijeh Dizaji Asl , Ali Rafat
{"title":"Targeting cancer-cell mitochondria using Tigecycline improves radiotherapy response in colorectal cancer cell line","authors":"Sepideh Hassanpour Khodaei , Shahnaz Sabetkam , Zeinab Mazloumi , Khadijeh Dizaji Asl , Ali Rafat","doi":"10.1016/j.mrfmmm.2025.111905","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Colorectal cancer (CRC) is the third most common cancer worldwide and causes more than 50,000 deaths in the United States each year. Due to the limited therapeutic options and poor prognosis in CRC, extensive research and development of novel therapeutic methods is essential. In this regard, the presence of cancer stem cells with unlimited division ability is the main reason for the therapeutic resistance in CRC. Tigecycline is a pharmacological mitochondria inhibitor and blocks mitochondria-related cell proliferation in cancer cells. This study investigated the effects of Tigecycline combined with radiotherapy on CRC cell apoptosis.</div></div><div><h3>Methods</h3><div>Human colorectal cancer cells (HCT-116) were treated with Tigecycline, and cell viability was measured with MTT assay. In the next step, the cells were exposed to radiation using a Siemens Primus 6 MV linear accelerator at radiation dose of 400 cGy. Finally, we evaluated cancer cell apoptosis, caspase-3 activity and apoptotic-related genes expression with AnnexinV/PI, flowcytometry and gene expression, respectively.</div></div><div><h3>Results</h3><div>The MTT assay revealed an IC50 value of 93 μM for Tigecycline after 48 hours. Mitochondria inhibition, at its IC50 value, sensitizes colorectal cancer cells to radiotherapy. Compared to monotherapy, the combination therapy increased the number of apoptotic cells and caspase-3 activity, up-regulated pro-apoptotic genes, and down-regulated anti-apoptotic genes.</div></div><div><h3>Conclusion</h3><div>In conclusion, our data suggests that targeting mitochondria may represent a clinically relevant approach to enhance the sensitivity of colorectal cancer cells to therapy. These findings could provide new insights into cancer therapy and might be used as a novel method to improve the current state of CRC therapy.</div></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"830 ","pages":"Article 111905"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510725000089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Colorectal cancer (CRC) is the third most common cancer worldwide and causes more than 50,000 deaths in the United States each year. Due to the limited therapeutic options and poor prognosis in CRC, extensive research and development of novel therapeutic methods is essential. In this regard, the presence of cancer stem cells with unlimited division ability is the main reason for the therapeutic resistance in CRC. Tigecycline is a pharmacological mitochondria inhibitor and blocks mitochondria-related cell proliferation in cancer cells. This study investigated the effects of Tigecycline combined with radiotherapy on CRC cell apoptosis.
Methods
Human colorectal cancer cells (HCT-116) were treated with Tigecycline, and cell viability was measured with MTT assay. In the next step, the cells were exposed to radiation using a Siemens Primus 6 MV linear accelerator at radiation dose of 400 cGy. Finally, we evaluated cancer cell apoptosis, caspase-3 activity and apoptotic-related genes expression with AnnexinV/PI, flowcytometry and gene expression, respectively.
Results
The MTT assay revealed an IC50 value of 93 μM for Tigecycline after 48 hours. Mitochondria inhibition, at its IC50 value, sensitizes colorectal cancer cells to radiotherapy. Compared to monotherapy, the combination therapy increased the number of apoptotic cells and caspase-3 activity, up-regulated pro-apoptotic genes, and down-regulated anti-apoptotic genes.
Conclusion
In conclusion, our data suggests that targeting mitochondria may represent a clinically relevant approach to enhance the sensitivity of colorectal cancer cells to therapy. These findings could provide new insights into cancer therapy and might be used as a novel method to improve the current state of CRC therapy.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.