{"title":"Categorical action for finite classical groups and its applications: Characteristic 0","authors":"Pengcheng Li , Peng Shan , Jiping Zhang","doi":"10.1016/j.aim.2025.110275","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct a categorical double quantum Heisenberg action on the representation category of finite classical groups <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>)</mo></math></span> with <em>q</em> odd. Over a field of characteristic zero or characteristic <em>ℓ</em> with <span><math><mi>ℓ</mi><mo>∤</mo><mi>q</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, we deduce a categorical action of a Kac-Moody algebra <span><math><mi>s</mi><msubsup><mrow><mi>l</mi></mrow><mrow><msub><mrow><mi>I</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow><mrow><mo>′</mo></mrow></msubsup><mo>⊕</mo><mi>s</mi><msubsup><mrow><mi>l</mi></mrow><mrow><msub><mrow><mi>I</mi></mrow><mrow><mo>−</mo></mrow></msub></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> on the representation category of finite classical groups. We show that the colored weight functions <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>(</mo><mo>−</mo><mo>)</mo></math></span>, <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>(</mo><mi>v</mi><mo>)</mo><mo>(</mo><mo>−</mo><mo>)</mo></math></span> and uniform projection can distinguish all irreducible characters of finite classical groups. In particular, the colored weight functions are complete invariants of quadratic unipotent characters. We also show that using the theta correspondence and extra symmetries of categorical double quantum Heisenberg action, the Kac-Moody action on the Grothendieck group of the whole category can be determined explicitly.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"471 ","pages":"Article 110275"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001732","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we construct a categorical double quantum Heisenberg action on the representation category of finite classical groups , and with q odd. Over a field of characteristic zero or characteristic ℓ with , we deduce a categorical action of a Kac-Moody algebra on the representation category of finite classical groups. We show that the colored weight functions , and uniform projection can distinguish all irreducible characters of finite classical groups. In particular, the colored weight functions are complete invariants of quadratic unipotent characters. We also show that using the theta correspondence and extra symmetries of categorical double quantum Heisenberg action, the Kac-Moody action on the Grothendieck group of the whole category can be determined explicitly.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.