Categorical action for finite classical groups and its applications: Characteristic 0

IF 1.5 1区 数学 Q1 MATHEMATICS
Pengcheng Li , Peng Shan , Jiping Zhang
{"title":"Categorical action for finite classical groups and its applications: Characteristic 0","authors":"Pengcheng Li ,&nbsp;Peng Shan ,&nbsp;Jiping Zhang","doi":"10.1016/j.aim.2025.110275","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct a categorical double quantum Heisenberg action on the representation category of finite classical groups <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>)</mo></math></span> with <em>q</em> odd. Over a field of characteristic zero or characteristic <em>ℓ</em> with <span><math><mi>ℓ</mi><mo>∤</mo><mi>q</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, we deduce a categorical action of a Kac-Moody algebra <span><math><mi>s</mi><msubsup><mrow><mi>l</mi></mrow><mrow><msub><mrow><mi>I</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow><mrow><mo>′</mo></mrow></msubsup><mo>⊕</mo><mi>s</mi><msubsup><mrow><mi>l</mi></mrow><mrow><msub><mrow><mi>I</mi></mrow><mrow><mo>−</mo></mrow></msub></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> on the representation category of finite classical groups. We show that the colored weight functions <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>(</mo><mo>−</mo><mo>)</mo></math></span>, <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>(</mo><mi>v</mi><mo>)</mo><mo>(</mo><mo>−</mo><mo>)</mo></math></span> and uniform projection can distinguish all irreducible characters of finite classical groups. In particular, the colored weight functions are complete invariants of quadratic unipotent characters. We also show that using the theta correspondence and extra symmetries of categorical double quantum Heisenberg action, the Kac-Moody action on the Grothendieck group of the whole category can be determined explicitly.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"471 ","pages":"Article 110275"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001732","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct a categorical double quantum Heisenberg action on the representation category of finite classical groups O2n+1(q), Sp2n(q) and O2n±(q) with q odd. Over a field of characteristic zero or characteristic with q(q1), we deduce a categorical action of a Kac-Moody algebra slI+slI on the representation category of finite classical groups. We show that the colored weight functions O+(u)(), O(v)() and uniform projection can distinguish all irreducible characters of finite classical groups. In particular, the colored weight functions are complete invariants of quadratic unipotent characters. We also show that using the theta correspondence and extra symmetries of categorical double quantum Heisenberg action, the Kac-Moody action on the Grothendieck group of the whole category can be determined explicitly.
有限经典群的分类作用及其应用特征 0
在具有q奇数的有限经典群O2n+1(q)、Sp2n(q)和O2n±(q)的表示范畴上构造了范畴双量子Heisenberg作用。在一个特征为0或特征为q(q−1)的场上,我们推导出Kac-Moody代数slI+ '⊕slI−'对有限经典群的表示范畴的范畴作用。证明了彩色权函数O+(u)(−)、O−(v)(−)和一致投影可以区分有限经典群的所有不可约特征。特别地,有色加权函数是二次型单幂字符的完全不变量。我们还证明了利用范畴双量子Heisenberg作用的对应和额外对称性,可以明确地确定整个范畴的Grothendieck群上的Kac-Moody作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信