Optimized heart disease prediction model using a meta-heuristic feature selection with improved binary salp swarm algorithm and stacking classifier

IF 7 2区 医学 Q1 BIOLOGY
M. Sowmiya , B. Banu Rekha , E. Malar
{"title":"Optimized heart disease prediction model using a meta-heuristic feature selection with improved binary salp swarm algorithm and stacking classifier","authors":"M. Sowmiya ,&nbsp;B. Banu Rekha ,&nbsp;E. Malar","doi":"10.1016/j.compbiomed.2025.110171","DOIUrl":null,"url":null,"abstract":"<div><div>Despite technological advancements, heart disease continues to be a major global health challenge, emphasizing the importance of developing accurate predictive models for early detection and timely intervention. This study proposes a heart disease prediction model integrating a stacking classifier with a nature-inspired meta-heuristic algorithm. It employs an improved Binary Salp Swarm Algorithm (BSSA) by incorporating a wolf optimizer and opposition-based learning for optimal feature selection. The proposed Stacking Classifier (SC) architecture features a two-tier ensemble: heterogeneous base classifiers at level 0 and a meta-learner at level 1. The BSSA is used to identify optimal features, which are then utilized to construct the stacking classifier. Experimental results demonstrate superior performance, achieving 95 % accuracy, 0.92 sensitivity, 0.97 specificity, 0.96 precision, and an F1 score of 0.95, with notably low false positive and false negative rates. Further, validation on larger datasets yielded an accuracy of 87.46 %. The feature selection process adopts a multi-objective strategy which enhances the classification accuracy and outperforms conventional techniques. The proposed method demonstrates significant potential for improving the predictive modelling in clinical settings for diagnosing heart diseases.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 110171"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite technological advancements, heart disease continues to be a major global health challenge, emphasizing the importance of developing accurate predictive models for early detection and timely intervention. This study proposes a heart disease prediction model integrating a stacking classifier with a nature-inspired meta-heuristic algorithm. It employs an improved Binary Salp Swarm Algorithm (BSSA) by incorporating a wolf optimizer and opposition-based learning for optimal feature selection. The proposed Stacking Classifier (SC) architecture features a two-tier ensemble: heterogeneous base classifiers at level 0 and a meta-learner at level 1. The BSSA is used to identify optimal features, which are then utilized to construct the stacking classifier. Experimental results demonstrate superior performance, achieving 95 % accuracy, 0.92 sensitivity, 0.97 specificity, 0.96 precision, and an F1 score of 0.95, with notably low false positive and false negative rates. Further, validation on larger datasets yielded an accuracy of 87.46 %. The feature selection process adopts a multi-objective strategy which enhances the classification accuracy and outperforms conventional techniques. The proposed method demonstrates significant potential for improving the predictive modelling in clinical settings for diagnosing heart diseases.

Abstract Image

基于改进的二元salp群算法和堆叠分类器的启发式特征选择优化了心脏病预测模型
尽管技术取得了进步,但心脏病仍然是一项重大的全球健康挑战,这强调了开发准确的预测模型以进行早期发现和及时干预的重要性。本研究提出了一种将堆叠分类器与自然启发的元启发式算法相结合的心脏病预测模型。它采用改进的二进制Salp群算法(BSSA),结合狼优化器和基于对立的学习来进行最优特征选择。提出的堆叠分类器(SC)体系结构具有两层集成:0级的异构基础分类器和1级的元学习器。使用BSSA识别最优特征,然后利用最优特征构建堆叠分类器。实验结果表明,该方法的准确率为95%,灵敏度为0.92,特异性为0.97,精密度为0.96,F1评分为0.95,假阳性和假阴性率均较低。此外,在更大的数据集上验证的准确率为87.46%。特征选择过程采用多目标策略,提高了分类精度,优于传统的分类方法。提出的方法证明了显著的潜力,以改善预测模型在临床设置诊断心脏病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信