Effects of surface termination and tensile strain on the thermal conductivity of the Ti3C2Tx MXene

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Jiang, Hao Jin, Ziye Xia, Yitong Zong, Jingwei Sun, Bo Liu
{"title":"Effects of surface termination and tensile strain on the thermal conductivity of the Ti3C2Tx MXene","authors":"Jun Jiang,&nbsp;Hao Jin,&nbsp;Ziye Xia,&nbsp;Yitong Zong,&nbsp;Jingwei Sun,&nbsp;Bo Liu","doi":"10.1016/j.commatsci.2025.113890","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of surface termination and tensile strain on the thermal conductivity of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene nanosheets using ReaxFF molecular dynamics (MD) simulations. The results demonstrate that the thermal conductivity of Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub> MXene is significantly higher than that of Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub> MXene, primarily due to its higher phonon group velocity and longer phonon mean free path (MFP). The presence of <img>OH functional groups in Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub> MXene results in reduced thermal conductivity compared to the <img>O groups in Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub>. This reduction is attributed to high-frequency vibrations of hydrogen atoms, which enhance phonon scattering and suppress low-frequency phonon modes. Furthermore, the thermal conductivity of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXenes exhibits a nonmonotonic dependence on the fraction of <img>OH groups. Specifically, it decreases initially with increasing <img>OH content up to a fraction of 0.8, followed by a slight increase at higher concentrations. This behavior is explained by the interplay between phonon scattering and the uniformity of <img>OH group distribution. The application of tensile strain further reduces thermal conductivity by broadening the C-atom projected phonon spectrum and inducing phonon peak splitting, which enhances phonon scattering and shortens phonon lifetime. These findings offer critical insights into the tunability of thermal conductivity in MXenes, providing a foundation for optimizing their performance in applications such as electronics, energy conversion, and thermoelectric devices.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113890"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002332","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of surface termination and tensile strain on the thermal conductivity of Ti3C2Tx MXene nanosheets using ReaxFF molecular dynamics (MD) simulations. The results demonstrate that the thermal conductivity of Ti3C2O2 MXene is significantly higher than that of Ti3C2(OH)2 MXene, primarily due to its higher phonon group velocity and longer phonon mean free path (MFP). The presence of OH functional groups in Ti3C2(OH)2 MXene results in reduced thermal conductivity compared to the O groups in Ti3C2O2. This reduction is attributed to high-frequency vibrations of hydrogen atoms, which enhance phonon scattering and suppress low-frequency phonon modes. Furthermore, the thermal conductivity of Ti3C2Tx MXenes exhibits a nonmonotonic dependence on the fraction of OH groups. Specifically, it decreases initially with increasing OH content up to a fraction of 0.8, followed by a slight increase at higher concentrations. This behavior is explained by the interplay between phonon scattering and the uniformity of OH group distribution. The application of tensile strain further reduces thermal conductivity by broadening the C-atom projected phonon spectrum and inducing phonon peak splitting, which enhances phonon scattering and shortens phonon lifetime. These findings offer critical insights into the tunability of thermal conductivity in MXenes, providing a foundation for optimizing their performance in applications such as electronics, energy conversion, and thermoelectric devices.

Abstract Image

表面终止和拉伸应变对Ti3C2Tx MXene导热性能的影响
本研究利用 ReaxFF 分子动力学 (MD) 模拟研究了表面终止和拉伸应变对 Ti3C2Tx MXene 纳米片热导率的影响。结果表明,Ti3C2O2 MXene 的热导率明显高于 Ti3C2(OH)2 MXene,这主要是由于它的声子群速度更高,声子平均自由路径(MFP)更长。Ti3C2(OH)2 MXene 中含有 OH 官能团,因此热导率比 Ti3C2O2 中的 O 官能团低。这种降低是由于氢原子的高频振动增强了声子散射,抑制了低频声子模式。此外,Ti3C2Tx MXenes 的热导率与羟基的比例呈非单调依赖关系。具体来说,随着羟基含量的增加,热导率最初会降低到 0.8,但浓度越高,热导率会略有上升。声子散射和 OH 基团分布均匀性之间的相互作用可以解释这种行为。拉伸应变会拓宽 C 原子投射声子频谱并导致声子峰值分裂,从而增强声子散射并缩短声子寿命,从而进一步降低热导率。这些发现为了解二氧化二烯热导率的可调性提供了重要见解,为优化其在电子、能量转换和热电设备等应用中的性能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信