Testing the real-world utility of Bayes theorem in artificial intelligence-enabled electrocardiogram algorithm for the detection of left ventricular systolic dysfunction

Betsy J. Medina-Inojosa , David M. Harmon , Jose R. Medina-Inojosa , Rickey E. Carter , Itzhak Zachi Attia , Paul A. Friedman , Francisco Lopez-Jimenez
{"title":"Testing the real-world utility of Bayes theorem in artificial intelligence-enabled electrocardiogram algorithm for the detection of left ventricular systolic dysfunction","authors":"Betsy J. Medina-Inojosa ,&nbsp;David M. Harmon ,&nbsp;Jose R. Medina-Inojosa ,&nbsp;Rickey E. Carter ,&nbsp;Itzhak Zachi Attia ,&nbsp;Paul A. Friedman ,&nbsp;Francisco Lopez-Jimenez","doi":"10.1016/j.ibmed.2025.100238","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To assess how the theoretical principles of Bayes' theorem hold true in a clinically impactful way when testing the diagnostic performance of an artificial intelligence (AI) tool, using the case of the AI-enabled electrocardiogram (AI-ECG) screening tool that detects left ventricular systolic dysfunction (LVSD) in a “real-world” setting.</div></div><div><h3>Patient and methods</h3><div>We analyzed data from 42,883 consecutive patients who underwent a clinically indicated ECG and an echocardiogram within two weeks at our center between January 1st and December 31st<sup>,</sup> 2019. We then evaluated area under the curve (AUC) of the receiver operating characteristics, sensitivity, specificity, positive and negative predictive values (PPV and NPV) of the AI-ECG to detect LVSD (left ventricle ejection fraction of ≤40 %) across (i) cumulative risk factor prevalence (pre-test probabilities) (ii) different diagnostic thresholds, using paired ECG-echocardiogram data.</div></div><div><h3>Results</h3><div>Prevalence of LVSD was 1.9 %, 4.0 %, 7.0 % and 13.9 % for patients with 0, 1–2, 3–4 and ≥5 risk-factors for LVSD. The AUC of the AI-ECG for each group was 0.955, 0.933, 0.901 and 0.886, respectively (p for trend&lt;0.001). Pre-test probabilities hardly influenced sensitivity but did impact specificity. PPV was affected more than NPV, which was modestly altered. Thresholds impacted diagnostic performance parameters, although their effect on NPV at low pre-test probability was negligible.</div></div><div><h3>Conclusion</h3><div>In real world, pre-test probabilities/cumulative risk-factors of disease do affect specificity. Using different diagnostic thresholds yields the highest impact on algorithm performance. A Bayesian approach may enhance individualized diagnostic performance when implementing AI algorithms.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100238"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To assess how the theoretical principles of Bayes' theorem hold true in a clinically impactful way when testing the diagnostic performance of an artificial intelligence (AI) tool, using the case of the AI-enabled electrocardiogram (AI-ECG) screening tool that detects left ventricular systolic dysfunction (LVSD) in a “real-world” setting.

Patient and methods

We analyzed data from 42,883 consecutive patients who underwent a clinically indicated ECG and an echocardiogram within two weeks at our center between January 1st and December 31st, 2019. We then evaluated area under the curve (AUC) of the receiver operating characteristics, sensitivity, specificity, positive and negative predictive values (PPV and NPV) of the AI-ECG to detect LVSD (left ventricle ejection fraction of ≤40 %) across (i) cumulative risk factor prevalence (pre-test probabilities) (ii) different diagnostic thresholds, using paired ECG-echocardiogram data.

Results

Prevalence of LVSD was 1.9 %, 4.0 %, 7.0 % and 13.9 % for patients with 0, 1–2, 3–4 and ≥5 risk-factors for LVSD. The AUC of the AI-ECG for each group was 0.955, 0.933, 0.901 and 0.886, respectively (p for trend<0.001). Pre-test probabilities hardly influenced sensitivity but did impact specificity. PPV was affected more than NPV, which was modestly altered. Thresholds impacted diagnostic performance parameters, although their effect on NPV at low pre-test probability was negligible.

Conclusion

In real world, pre-test probabilities/cumulative risk-factors of disease do affect specificity. Using different diagnostic thresholds yields the highest impact on algorithm performance. A Bayesian approach may enhance individualized diagnostic performance when implementing AI algorithms.
测试贝叶斯定理在人工智能心电图算法检测左心室收缩功能障碍中的实际效用
目的评估贝叶斯定理的理论原理在测试人工智能(AI)工具的诊断性能时如何以临床有效的方式成立,使用在“现实世界”环境中检测左心室收缩功能障碍(LVSD)的人工智能启用心电图(AI- ecg)筛查工具。患者和方法我们分析了2019年1月1日至12月31日在我们中心连续两周内接受临床指示心电图和超声心动图检查的42,883例患者的数据。然后,我们使用配对的心电图超声心动图数据,评估受试者工作特征的曲线下面积(AUC)、敏感性、特异性、阳性和阴性预测值(PPV和NPV),以检测LVSD(左心室射血分数≤40%)(i)累积危险因素患病率(测试前概率)(ii)不同的诊断阈值。结果伴有0、1-2、3-4、≥5种LVSD危险因素的患者LVSD患病率分别为1.9%、4.0%、7.0%、13.9%。各组AI-ECG AUC分别为0.955、0.933、0.901、0.886 (p为趋势值<;0.001)。预测试概率几乎不影响敏感性,但影响特异性。PPV比NPV受影响更大,NPV略有改变。阈值影响诊断性能参数,尽管它们在低测试前概率下对NPV的影响可以忽略不计。结论在现实世界中,检测前概率/疾病累积风险因素确实影响特异性。使用不同的诊断阈值对算法性能的影响最大。在实现人工智能算法时,贝叶斯方法可以提高个性化诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信