Microfluidic Synthesis of CsPbBr3 Quantum Dots with Tunable Size and Enhanced Optoelectronic Properties via Temperature-Assisted Base-Acid Ligand Modulation

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yuhan Deng, Yujie Yuan*, Jian Ni*, Lei Zheng, Jinlian Bi, Jia Guo, Rufeng Wang, Haoxuan Li, Shuai Zhang, Hongkun Cai and Jianjun Zhang, 
{"title":"Microfluidic Synthesis of CsPbBr3 Quantum Dots with Tunable Size and Enhanced Optoelectronic Properties via Temperature-Assisted Base-Acid Ligand Modulation","authors":"Yuhan Deng,&nbsp;Yujie Yuan*,&nbsp;Jian Ni*,&nbsp;Lei Zheng,&nbsp;Jinlian Bi,&nbsp;Jia Guo,&nbsp;Rufeng Wang,&nbsp;Haoxuan Li,&nbsp;Shuai Zhang,&nbsp;Hongkun Cai and Jianjun Zhang,&nbsp;","doi":"10.1021/acsaem.5c0035610.1021/acsaem.5c00356","DOIUrl":null,"url":null,"abstract":"<p >All-inorganic perovskite quantum dots (PQDs) have sparked a research boom due to their superior optoelectronic properties. However, current synthesis methods are complex and unsuitable for large-scale continuous production because the rapid reaction kinetics of quantum dots (QDs) make regulating their nucleation and growth challenging. Herein, we developed an efficient microfluidic technology using temperature-assisted base-acid ligand modulation to control the nucleation and growth of PQDs for mass fabrication. The obtained CsPbBr<sub>3</sub> PQDs exhibited high dispersion, uniform sizes, and high photoluminescence quantum yield. Moreover, CsPbBr<sub>3</sub> maintained high photoluminescence intensity for 120 min under UV irradiation, demonstrating good stability. These results provide a promising pathway for large-scale PQD production, which is crucial for advanced optoelectronic applications. Compared with the traditional hot injection (HI) and ligand-assisted reprecipitation (LARP) methods, microfluidic technology significantly saves materials and reagents. The microfluidic technology is also helpful for precisely controlling the nucleation process of QD growth.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4701–4710 4701–4710"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00356","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

All-inorganic perovskite quantum dots (PQDs) have sparked a research boom due to their superior optoelectronic properties. However, current synthesis methods are complex and unsuitable for large-scale continuous production because the rapid reaction kinetics of quantum dots (QDs) make regulating their nucleation and growth challenging. Herein, we developed an efficient microfluidic technology using temperature-assisted base-acid ligand modulation to control the nucleation and growth of PQDs for mass fabrication. The obtained CsPbBr3 PQDs exhibited high dispersion, uniform sizes, and high photoluminescence quantum yield. Moreover, CsPbBr3 maintained high photoluminescence intensity for 120 min under UV irradiation, demonstrating good stability. These results provide a promising pathway for large-scale PQD production, which is crucial for advanced optoelectronic applications. Compared with the traditional hot injection (HI) and ligand-assisted reprecipitation (LARP) methods, microfluidic technology significantly saves materials and reagents. The microfluidic technology is also helpful for precisely controlling the nucleation process of QD growth.

Abstract Image

基于温度辅助酸碱配体调制的CsPbBr3量子点尺寸可调及光电性能增强的微流控合成
全无机钙钛矿量子点(PQDs)由于其优越的光电性能引起了研究热潮。然而,目前的合成方法复杂,不适合大规模连续生产,因为量子点(QDs)的快速反应动力学使得调节其成核和生长具有挑战性。在此,我们开发了一种高效的微流体技术,使用温度辅助的碱酸配体调制来控制pqd的成核和生长,用于批量制造。所制得的CsPbBr3 PQDs具有高色散、尺寸均匀、高光致发光量子产率等特点。此外,CsPbBr3在紫外照射下保持了120 min的高光致发光强度,表现出良好的稳定性。这些结果为大规模PQD生产提供了一条有希望的途径,这对先进的光电应用至关重要。与传统的热注射(HI)和配体辅助再沉淀(LARP)方法相比,微流控技术显著节省了材料和试剂。微流控技术还有助于精确控制量子点生长的成核过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信