Engineering the Thermoelectric and Magnetocaloric Performance of Bi0.4Sb1.6Te3–Cr5Te6 Composites

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiushun Zhu, Peilin Miao, Rongcheng Li, Longli Wang, Xinfeng Tang and Gangjian Tan*, 
{"title":"Engineering the Thermoelectric and Magnetocaloric Performance of Bi0.4Sb1.6Te3–Cr5Te6 Composites","authors":"Jiushun Zhu,&nbsp;Peilin Miao,&nbsp;Rongcheng Li,&nbsp;Longli Wang,&nbsp;Xinfeng Tang and Gangjian Tan*,&nbsp;","doi":"10.1021/acsaem.5c0044310.1021/acsaem.5c00443","DOIUrl":null,"url":null,"abstract":"<p >Materials with both excellent magnetocaloric properties and high thermoelectric performance play a vital role in the invention of next-generation all-solid-state refrigeration technology. Herein, we investigate the interfacial reactions, thermoelectric and magnetocaloric properties of spark plasma sintered Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>–Cr<sub>5</sub>Te<sub>6</sub> composites, where a spatially confined ferromagnetic Cr<sub>5</sub>Te<sub>6</sub> phase is embedded into the Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> thermoelectric matrix. The diffusion of Te element from Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> into Cr<sub>5</sub>Te<sub>6</sub> as a result of concentration gradient during sintering leads to the formation of interfacial phase Cr<sub>2</sub>Te<sub>3</sub> and Sb<sub>Te</sub> antisite defects in the Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>, both of which are detrimental to the thermoelectric and magnetocaloric performance of the composites. Sintering at a lower temperature effectively mitigates the interfacial reactions and suppresses Sb<sub>Te</sub> antisite defects. Consequently, the room-temperature magnetocaloric and thermoelectric properties of the composites are concurrently optimized. Specifically, a high <i>ZT</i> value of 0.65 at 300 K and a relatively large magnetic entropy change Δ<i>S</i><sub>max</sub> = 0.33 J kg<sup>–1</sup> K<sup>–1</sup> at 5 T have been obtained for the Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>-15 wt % Cr<sub>5</sub>Te<sub>6</sub> composite sintered at 625 K. This research offers a promising pathway for the development of high-performance magnetocaloric and thermoelectric composite materials.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4759–4766 4759–4766"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00443","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Materials with both excellent magnetocaloric properties and high thermoelectric performance play a vital role in the invention of next-generation all-solid-state refrigeration technology. Herein, we investigate the interfacial reactions, thermoelectric and magnetocaloric properties of spark plasma sintered Bi0.4Sb1.6Te3–Cr5Te6 composites, where a spatially confined ferromagnetic Cr5Te6 phase is embedded into the Bi0.4Sb1.6Te3 thermoelectric matrix. The diffusion of Te element from Bi0.4Sb1.6Te3 into Cr5Te6 as a result of concentration gradient during sintering leads to the formation of interfacial phase Cr2Te3 and SbTe antisite defects in the Bi0.4Sb1.6Te3, both of which are detrimental to the thermoelectric and magnetocaloric performance of the composites. Sintering at a lower temperature effectively mitigates the interfacial reactions and suppresses SbTe antisite defects. Consequently, the room-temperature magnetocaloric and thermoelectric properties of the composites are concurrently optimized. Specifically, a high ZT value of 0.65 at 300 K and a relatively large magnetic entropy change ΔSmax = 0.33 J kg–1 K–1 at 5 T have been obtained for the Bi0.4Sb1.6Te3-15 wt % Cr5Te6 composite sintered at 625 K. This research offers a promising pathway for the development of high-performance magnetocaloric and thermoelectric composite materials.

Abstract Image

Bi0.4Sb1.6Te3-Cr5Te6复合材料热电和磁热性能的工程研究
具有优异磁热性能和高热电性能的材料在下一代全固态制冷技术的发明中起着至关重要的作用。在此,我们研究了火花等离子体烧结Bi0.4Sb1.6Te3 - Cr5Te6复合材料的界面反应、热电和磁热性能,其中一个空间受限的铁磁Cr5Te6相嵌入到Bi0.4Sb1.6Te3热电基体中。烧结过程中,由于浓度梯度,Te元素从Bi0.4Sb1.6Te3扩散到Cr5Te6中,导致Bi0.4Sb1.6Te3中界面相Cr2Te3和SbTe反位缺陷的形成,不利于复合材料的热电和磁热性能。在较低温度下烧结可有效减轻界面反应,抑制SbTe反位缺陷。因此,复合材料的室温磁热电性能同时得到优化。具体来说,在625 K下烧结的Bi0.4Sb1.6Te3-15 wt % Cr5Te6复合材料在300 K时获得了较高的ZT值0.65,在5T时获得了较大的磁熵变化ΔSmax = 0.33 J kg-1 K -1。该研究为高性能磁热电复合材料的发展提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信