Chen Yuan, Ye Yang*, Qiongya Jin, Chengzhang Chen, Qi Cheng, Xinyu Ji, Qing Yang and Weijie Song*,
{"title":"An Ethylene-Vinyl Acetate Copolymer Based Solid Polymer Electrolyte via Water Modification for Laminated WO3-NiO Electrochromic Devices","authors":"Chen Yuan, Ye Yang*, Qiongya Jin, Chengzhang Chen, Qi Cheng, Xinyu Ji, Qing Yang and Weijie Song*, ","doi":"10.1021/acsaem.4c0335910.1021/acsaem.4c03359","DOIUrl":null,"url":null,"abstract":"<p >The ethylene-vinyl acetate (EVA) copolymer, a popular transparent adhesive interlayer material for solar cell encapsulation, can be formed by a simple extrusion process at a relatively low temperature without the aid of an organic solvent. However, the inherently poor ionic conductivity (σ) restricts its application as a solid polymer electrolyte (SPE) for laminated WO<sub>3</sub>-NiO electrochromic devices (ECDs). Here, we propose a strategy to improve the σ by a water modification in the EVA matrix. The results demonstrate that the sample treated at 50 °C and 25% relative humidity (RH) for 1 h exhibits a higher σ of 3.80 × 10<sup>–4</sup> S cm<sup>–1</sup>, as well as a visual transmittance of more than 90%, a tensile strength of 1.61 MPa, and an excellent thermal stability up to 219 °C. Using this kind of EVA-based SPE (EVA-SPE) as the interlayer, WO<sub>3</sub>-NiO based ECDs with sizes varying from 2.5 × 5 to 20 × 20 cm<sup>2</sup> have been successfully laminated and exhibit favorable EC performances. Besides, the water modification is conducive to an enlarged light modulation range (Δ<i>T</i>) for the laminated ECD in the near-infrared zone, ensuring a high energy efficiency when the device is used as a smart window in buildings.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4466–4474 4466–4474"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03359","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ethylene-vinyl acetate (EVA) copolymer, a popular transparent adhesive interlayer material for solar cell encapsulation, can be formed by a simple extrusion process at a relatively low temperature without the aid of an organic solvent. However, the inherently poor ionic conductivity (σ) restricts its application as a solid polymer electrolyte (SPE) for laminated WO3-NiO electrochromic devices (ECDs). Here, we propose a strategy to improve the σ by a water modification in the EVA matrix. The results demonstrate that the sample treated at 50 °C and 25% relative humidity (RH) for 1 h exhibits a higher σ of 3.80 × 10–4 S cm–1, as well as a visual transmittance of more than 90%, a tensile strength of 1.61 MPa, and an excellent thermal stability up to 219 °C. Using this kind of EVA-based SPE (EVA-SPE) as the interlayer, WO3-NiO based ECDs with sizes varying from 2.5 × 5 to 20 × 20 cm2 have been successfully laminated and exhibit favorable EC performances. Besides, the water modification is conducive to an enlarged light modulation range (ΔT) for the laminated ECD in the near-infrared zone, ensuring a high energy efficiency when the device is used as a smart window in buildings.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.