Ekaterina A. Komissarova*, Sergei A. Kuklin, Victoria V. Ozerova, Andrey V. Maskaev, Azat F. Akbulatov, Nikita A. Emelianov, Alexander V. Mumyatov, Lavrenty G. Gutsev, Lyubov A. Frolova and Pavel A. Troshin*,
{"title":"Dopant-Free Polymeric Hole-Transport Materials for Perovskite Solar Cells: Simple Is Best!","authors":"Ekaterina A. Komissarova*, Sergei A. Kuklin, Victoria V. Ozerova, Andrey V. Maskaev, Azat F. Akbulatov, Nikita A. Emelianov, Alexander V. Mumyatov, Lavrenty G. Gutsev, Lyubov A. Frolova and Pavel A. Troshin*, ","doi":"10.1021/acsaem.4c0263110.1021/acsaem.4c02631","DOIUrl":null,"url":null,"abstract":"<p >A series of (BDD-X)<sub>n</sub> conjugated polymers, comprised of 5,7-bis(2-ethylhexyl)benzo[1,2-<i>c</i>:4,5-<i>c</i>′]dithiophene-4,8-dione (BDD) and X = B (<b>P1</b>), X = TBT (<b>P2</b>), and X = TBTBT (<b>P3</b>), where T = thiophene and B = benzo[<i>c</i>][1,2,5]thiadiazole, have been synthesized and applied as dopant-free hole-transport layer materials in perovskite solar cells (PSCs). We explored the effect of the molecular structure of the block X on the optical and electronic properties of the polymers, the nanoscale morphology of their films, and the impact of all these parameters on the performance of the polymers in PSCs. As a result, using the polymer <b>P1</b> with the simplest molecular architecture provided a power conversion efficiency (PCE) of 20.1% in solar cells, thus outperforming devices assembled with the more sophisticated polymers <b>P2</b>–<b>P3</b> or the reference poly(triarylamine)-based hole-transport materials. The enhanced device performance is attributed to a better HOMO alignment of <b>P1</b> with respect to the perovskite valence band, a low concentration of defects and suppressed carrier recombination at the <b>P1</b>/perovskite interface and, most importantly, a highly uniform film structure, as revealed by atomic force microscopy and infrared scattering near-field optical microscopy (IR s-SNOM) techniques. The supramolecular interactions of the building blocks of polymers <b>P1</b>–<b>P3</b> with the perovskite films, resulting in the passivation of surface defects, were further studied by density functional theory calculations.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4072–4079 4072–4079"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02631","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A series of (BDD-X)n conjugated polymers, comprised of 5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione (BDD) and X = B (P1), X = TBT (P2), and X = TBTBT (P3), where T = thiophene and B = benzo[c][1,2,5]thiadiazole, have been synthesized and applied as dopant-free hole-transport layer materials in perovskite solar cells (PSCs). We explored the effect of the molecular structure of the block X on the optical and electronic properties of the polymers, the nanoscale morphology of their films, and the impact of all these parameters on the performance of the polymers in PSCs. As a result, using the polymer P1 with the simplest molecular architecture provided a power conversion efficiency (PCE) of 20.1% in solar cells, thus outperforming devices assembled with the more sophisticated polymers P2–P3 or the reference poly(triarylamine)-based hole-transport materials. The enhanced device performance is attributed to a better HOMO alignment of P1 with respect to the perovskite valence band, a low concentration of defects and suppressed carrier recombination at the P1/perovskite interface and, most importantly, a highly uniform film structure, as revealed by atomic force microscopy and infrared scattering near-field optical microscopy (IR s-SNOM) techniques. The supramolecular interactions of the building blocks of polymers P1–P3 with the perovskite films, resulting in the passivation of surface defects, were further studied by density functional theory calculations.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.