Lin Feng, Xiangzheng Fu, Zhenya Du, Yuting Guo, Linlin Zhuo*, Yan Yang, Dongsheng Cao* and Xiaojun Yao*,
{"title":"MultiCTox: Empowering Accurate Cardiotoxicity Prediction through Adaptive Multimodal Learning","authors":"Lin Feng, Xiangzheng Fu, Zhenya Du, Yuting Guo, Linlin Zhuo*, Yan Yang, Dongsheng Cao* and Xiaojun Yao*, ","doi":"10.1021/acs.jcim.5c0002210.1021/acs.jcim.5c00022","DOIUrl":null,"url":null,"abstract":"<p >Cardiotoxicity refers to the inhibitory effects of drugs on cardiac ion channels. Accurate prediction of cardiotoxicity is crucial yet challenging, as it directly impacts the evaluation of cardiac drug efficacy and safety. Numerous methods have been developed to predict cardiotoxicity, yet their performance remains limited. A key limitation is that these methods often rely solely on single-modal data, making multimodal data integration challenging. As a result, we present a multimodal method integrating molecular SMILES, structure, and fingerprint to enhance cardiotoxicity prediction. First, we designed a fusion layer to unify representations from different modalities. During training, the model maximizes intramodal similarity for the same molecule while minimizing intermolecular similarity, ensuring consistent cross-modal representations. This study evaluates the inhibitory effects of candidate drugs on voltage-gated potassium (hERG), sodium (Nav1.5), and calcium (Cav1.2) channels. Experimental results demonstrate that the proposed model significantly outperforms existing state-of-the-art methods in cardiotoxicity prediction. We anticipate that this model will contribute significantly to the development and safety evaluation of cardiac drugs, reducing cardiotoxicity-related risks.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 7","pages":"3517–3528 3517–3528"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00022","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiotoxicity refers to the inhibitory effects of drugs on cardiac ion channels. Accurate prediction of cardiotoxicity is crucial yet challenging, as it directly impacts the evaluation of cardiac drug efficacy and safety. Numerous methods have been developed to predict cardiotoxicity, yet their performance remains limited. A key limitation is that these methods often rely solely on single-modal data, making multimodal data integration challenging. As a result, we present a multimodal method integrating molecular SMILES, structure, and fingerprint to enhance cardiotoxicity prediction. First, we designed a fusion layer to unify representations from different modalities. During training, the model maximizes intramodal similarity for the same molecule while minimizing intermolecular similarity, ensuring consistent cross-modal representations. This study evaluates the inhibitory effects of candidate drugs on voltage-gated potassium (hERG), sodium (Nav1.5), and calcium (Cav1.2) channels. Experimental results demonstrate that the proposed model significantly outperforms existing state-of-the-art methods in cardiotoxicity prediction. We anticipate that this model will contribute significantly to the development and safety evaluation of cardiac drugs, reducing cardiotoxicity-related risks.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.