Recent Advances in the Modeling of Ionic Liquids Using Artificial Neural Networks

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Adrian Racki,  and , Kamil Paduszyński*, 
{"title":"Recent Advances in the Modeling of Ionic Liquids Using Artificial Neural Networks","authors":"Adrian Racki,&nbsp; and ,&nbsp;Kamil Paduszyński*,&nbsp;","doi":"10.1021/acs.jcim.4c0236410.1021/acs.jcim.4c02364","DOIUrl":null,"url":null,"abstract":"<p >This paper reviews the recent and most impactful advancements in the application of artificial neural networks in modeling the properties of ionic liquids. As salts that are liquid at temperatures below 100 °C, ionic liquids possess unique properties beneficial for various industrial applications such as carbon capture, catalytic solvents, and lubricant additives. The study emphasizes the challenges in selecting appropriate ILs due to the vast variability in their properties, which depend significantly on their cation and anion structures. The review discusses the advantages of using ANNs, including feed-forward, cascade-forward, convolutional, recurrent, and graph neural networks, over traditional machine learning algorithms for predicting the thermodynamic and physical properties of ILs. The paper also highlights the importance of data preparation, including data collection, feature engineering, and data cleaning, in developing accurate predictive models. Additionally, the review covers the interpretability of these models using techniques such as SHapley Additive exPlanations to understand feature importance. The authors conclude by discussing future opportunities and the potential of combining ANNs with other computational methods to design new ILs with targeted properties.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 7","pages":"3161–3175 3161–3175"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c02364","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reviews the recent and most impactful advancements in the application of artificial neural networks in modeling the properties of ionic liquids. As salts that are liquid at temperatures below 100 °C, ionic liquids possess unique properties beneficial for various industrial applications such as carbon capture, catalytic solvents, and lubricant additives. The study emphasizes the challenges in selecting appropriate ILs due to the vast variability in their properties, which depend significantly on their cation and anion structures. The review discusses the advantages of using ANNs, including feed-forward, cascade-forward, convolutional, recurrent, and graph neural networks, over traditional machine learning algorithms for predicting the thermodynamic and physical properties of ILs. The paper also highlights the importance of data preparation, including data collection, feature engineering, and data cleaning, in developing accurate predictive models. Additionally, the review covers the interpretability of these models using techniques such as SHapley Additive exPlanations to understand feature importance. The authors conclude by discussing future opportunities and the potential of combining ANNs with other computational methods to design new ILs with targeted properties.

离子液体人工神经网络建模研究进展
本文综述了人工神经网络在模拟离子液体性质方面的最新和最具影响力的进展。离子液体在温度低于100°C时呈液态,具有独特的性能,有利于各种工业应用,如碳捕获、催化溶剂和润滑剂添加剂。该研究强调了选择合适的il的挑战,因为它们的性质有很大的可变性,这在很大程度上取决于它们的阳离子和阴离子结构。本文讨论了使用人工神经网络的优势,包括前馈、级联、卷积、循环和图神经网络,与传统的机器学习算法相比,用于预测il的热力学和物理性质。本文还强调了数据准备的重要性,包括数据收集、特征工程和数据清理,以开发准确的预测模型。此外,本文还介绍了使用SHapley加法解释等技术来理解特征重要性的这些模型的可解释性。作者最后讨论了未来的机会和将人工神经网络与其他计算方法结合起来设计具有目标性质的新il的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信