Sulfur outgassing and in-gassing in lunar orange glass beads and implications for 33S “Anomaly” in the Moon

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Xue Su , Youxue Zhang , Yang Liu
{"title":"Sulfur outgassing and in-gassing in lunar orange glass beads and implications for 33S “Anomaly” in the Moon","authors":"Xue Su ,&nbsp;Youxue Zhang ,&nbsp;Yang Liu","doi":"10.1016/j.gca.2025.03.026","DOIUrl":null,"url":null,"abstract":"<div><div>Our recent investigations have discovered inward diffusion (in-gassing) of moderately volatile elements (MVEs; e.g., Na, K and Cu) from volcanic gas into volcanic beads/droplets. In this work, we examine the distribution of sulfur in lunar orange glass beads. Our analyses reveal that sulfur exhibits a non-uniform distribution across the beads, forming “U” or “W” shaped profiles typical of in-gassing. A model developed to assess sulfur contributions from different sources (original magmatic sulfur versus atmospheric in-gassed sulfur) in the orange beads indicates that atmospheric sulfur in-gassed during eruption contributes approximately 9–24 % to the total sulfur content of an orange bead, averaging around 16 %. This in-gassed sulfur is derived from the eruption plume, where atmospheric sulfur could undergo photochemical reactions induced by UV light, leading to mass independent fractionation and a distinct sulfur isotope signature.</div><div>Interestingly, a recent study discovered a small mass independent isotope fractionation of sulfur in lunar orange glass beads in drive tube 74002/1 and a lack of such mass independent isotope fractionation in black glass beads in the same lunar sample. This finding contrasts with sulfur in lunar basalts, which typically exhibit mass dependent fractionation. With our work, the observed mass independent fractionation signal in sulfur isotopes of orange beads can be attributed to the in-gassing of photolytic sulfur in the optically thin part of the eruption plume where UV light can penetrate. Using the sulfur isotope data of lunar orange beads, we estimate that the Δ<sup>33</sup>S value of atmospheric sulfur is approximately −0.18 ‰. Our study provides new insights into the complex dynamics of volatile elements in lunar volcanic processes, highlighting the role of in-gassing in shaping sulfur isotope signatures in volcanic glass beads.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"397 ","pages":"Pages 164-175"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725001644","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our recent investigations have discovered inward diffusion (in-gassing) of moderately volatile elements (MVEs; e.g., Na, K and Cu) from volcanic gas into volcanic beads/droplets. In this work, we examine the distribution of sulfur in lunar orange glass beads. Our analyses reveal that sulfur exhibits a non-uniform distribution across the beads, forming “U” or “W” shaped profiles typical of in-gassing. A model developed to assess sulfur contributions from different sources (original magmatic sulfur versus atmospheric in-gassed sulfur) in the orange beads indicates that atmospheric sulfur in-gassed during eruption contributes approximately 9–24 % to the total sulfur content of an orange bead, averaging around 16 %. This in-gassed sulfur is derived from the eruption plume, where atmospheric sulfur could undergo photochemical reactions induced by UV light, leading to mass independent fractionation and a distinct sulfur isotope signature.
Interestingly, a recent study discovered a small mass independent isotope fractionation of sulfur in lunar orange glass beads in drive tube 74002/1 and a lack of such mass independent isotope fractionation in black glass beads in the same lunar sample. This finding contrasts with sulfur in lunar basalts, which typically exhibit mass dependent fractionation. With our work, the observed mass independent fractionation signal in sulfur isotopes of orange beads can be attributed to the in-gassing of photolytic sulfur in the optically thin part of the eruption plume where UV light can penetrate. Using the sulfur isotope data of lunar orange beads, we estimate that the Δ33S value of atmospheric sulfur is approximately −0.18 ‰. Our study provides new insights into the complex dynamics of volatile elements in lunar volcanic processes, highlighting the role of in-gassing in shaping sulfur isotope signatures in volcanic glass beads.
月球橙色玻璃珠中的硫磺出气和入气及其对月球33S“异常”的影响
我们最近的研究发现,中度挥发性元素(MVEs;例如 Na、K 和 Cu)从火山气体向内扩散(in-gassing)到火山珠/液滴中。在这项工作中,我们研究了硫在月球橙色玻璃珠中的分布。我们的分析表明,硫在玻璃珠中的分布并不均匀,形成典型的 "U "形或 "W "形内气体分布。为评估桔色珠子中不同来源(原始岩浆硫和大气中的气化硫)的硫含量而建立的模型表明,喷发过程中大气中的气化硫约占桔色珠子总硫含量的 9-24%,平均约为 16%。这种气态硫来自喷发羽流,大气中的硫可能会在紫外线的诱导下发生光化学反应,从而导致与质量无关的分馏和独特的硫同位素特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信