The effect of CO2 on the partitioning of H2O between clinopyroxene and melts and melting of volatile-bearing eclogites

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Andrea Curtolo , Pierre Condamine , Federica Schiavi , Nathalie Bolfan-Casanova , Davide Novella
{"title":"The effect of CO2 on the partitioning of H2O between clinopyroxene and melts and melting of volatile-bearing eclogites","authors":"Andrea Curtolo ,&nbsp;Pierre Condamine ,&nbsp;Federica Schiavi ,&nbsp;Nathalie Bolfan-Casanova ,&nbsp;Davide Novella","doi":"10.1016/j.gca.2025.03.013","DOIUrl":null,"url":null,"abstract":"<div><div>H<sub>2</sub>O and CO<sub>2</sub> are critical components for the development and sustainment of life on Earth and affect a wide variety of geological processes. It has been suggested that the presence of CO<sub>2</sub> in the mantle could alter how H<sub>2</sub>O is stored and partitioned between minerals and melts, implying dramatic effects on both melting processes and H<sub>2</sub>O storage capacities of the Earth’s mantle. Eclogites, which are present as heterogeneities in the mantle, have been shown to participate in the production of oceanic island basalts such as the HIMU (High-µ, µ = <sup>238</sup>U/<sup>204</sup>Pb). They can host significant amounts of H<sub>2</sub>O in clinopyroxenes and their H<sub>2</sub>O storage capacity and melting temperature can be significantly influenced by the presence of CO<sub>2</sub>. Here, the effect of CO<sub>2</sub> on the partition coefficient of H<sub>2</sub>O between clinopyroxene and melt (<span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>cpx</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup><mo>=</mo><msubsup><mi>C</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>cpx</mi></mrow></msubsup><mo>/</mo><msubsup><mi>C</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>melt</mi></mrow></msubsup></mrow></math></span>) was explored at high-pressure and high-temperature by conducting piston cylinder experiments at 1200 °C and 2 GPa. The experiments employed a basaltic starting mixture with different concentrations of H<sub>2</sub>O and CO<sub>2</sub> and produced an assemblage consisting of more than 60 wt% basaltic-andesitic melt in equilibrium with high-Al (Al<sub>2</sub>O<sub>3</sub> = 7.83–11.18 wt%) clinopyroxene crystals. The H<sub>2</sub>O concentration in clinopyroxene, measured by Fourier Transform Infrared spectroscopy, ranges from 869 ± 71 to 1950 ± 134 ppm wt, and shows a negative correlation with the concentration of CO<sub>2</sub> in the system and a positive correlation with tetrahedrally-coordinated Al<sup>3+</sup> in the clinopyroxene. The quenched melts have H<sub>2</sub>O and CO<sub>2</sub> concentrations ranging from 5.18 to 6.97 wt% and from 0.19 to 2.59 wt%, respectively. The calculated <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>cpx</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> varies from 0.031 ± 0.005 at XCO<sub>2</sub> = 0.03 to 0.017 ± 0.003 at XCO<sub>2</sub> = 0.34 (where XCO<sub>2</sub> <span><math><mrow><mo>=</mo><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub><mo>/</mo><mrow><mfenced><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi><mo>+</mo><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></mfenced></mrow></mrow></math></span> in wt). The variation of <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>cpx</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> as a function of XCO<sub>2</sub> is described by a power law in the form: <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>cpx</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup><mo>=</mo><mn>0.0123</mn><mo>∗</mo><mi>X</mi><mi>C</mi><msubsup><mi>O</mi><mrow><mn>2</mn></mrow><mrow><mo>-</mo><mn>0.237</mn></mrow></msubsup></mrow></math></span>, with an extrapolated <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>cpx</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> of 0.033 at XCO<sub>2</sub> = 0. The calculated <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>cpx</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> is combined with <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>grt</mi><mo>/</mo><mi>c</mi><mi>p</mi><mi>x</mi></mrow></msubsup></mrow></math></span> to constrain the effect of CO<sub>2</sub> on the H<sub>2</sub>O partition coefficient between an eclogite and a melt (<span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>eclo</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span>), which is then used to predict the melting temperature of eclogite in a hydrous-carbonated system. The results show that melting of hydrous-carbonated eclogite (600 ppm wt H<sub>2</sub>O-300 ppm wt CO<sub>2</sub>) occurs at temperatures drastically lower than those of both purely hydrous and purely carbonated melting. In this scenario, the temperature of hydrous carbonated melting of eclogite remains lower than the mantle adiabat and crosses the geotherm of the hottest subduction zones at P &gt; 5.8 GPa, indicating that the oceanic crust in a subducting slab could undergo partial melting at this pressure. In addition, <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>eclo</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> is used in a simple mass balance model to constrain the H<sub>2</sub>O content of a mantle source lithology of HIMU melts, suggested to be made mainly of recycled oceanic crust. The model, using <span><math><mrow><msubsup><mi>D</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mrow><mi>eclo</mi><mo>/</mo><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> at XCO<sub>2</sub> values of 0, 0.1 and 0.3, indicates that partial melting of eclogite with a bulk H<sub>2</sub>O content ranging from ∼300 to ∼720 ppm wt can potentially explain the H<sub>2</sub>O abundance measured in magmas originating from the HIMU mantle reservoir.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"398 ","pages":"Pages 54-66"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725001292","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

H2O and CO2 are critical components for the development and sustainment of life on Earth and affect a wide variety of geological processes. It has been suggested that the presence of CO2 in the mantle could alter how H2O is stored and partitioned between minerals and melts, implying dramatic effects on both melting processes and H2O storage capacities of the Earth’s mantle. Eclogites, which are present as heterogeneities in the mantle, have been shown to participate in the production of oceanic island basalts such as the HIMU (High-µ, µ = 238U/204Pb). They can host significant amounts of H2O in clinopyroxenes and their H2O storage capacity and melting temperature can be significantly influenced by the presence of CO2. Here, the effect of CO2 on the partition coefficient of H2O between clinopyroxene and melt (DH2Ocpx/melt=CH2Ocpx/CH2Omelt) was explored at high-pressure and high-temperature by conducting piston cylinder experiments at 1200 °C and 2 GPa. The experiments employed a basaltic starting mixture with different concentrations of H2O and CO2 and produced an assemblage consisting of more than 60 wt% basaltic-andesitic melt in equilibrium with high-Al (Al2O3 = 7.83–11.18 wt%) clinopyroxene crystals. The H2O concentration in clinopyroxene, measured by Fourier Transform Infrared spectroscopy, ranges from 869 ± 71 to 1950 ± 134 ppm wt, and shows a negative correlation with the concentration of CO2 in the system and a positive correlation with tetrahedrally-coordinated Al3+ in the clinopyroxene. The quenched melts have H2O and CO2 concentrations ranging from 5.18 to 6.97 wt% and from 0.19 to 2.59 wt%, respectively. The calculated DH2Ocpx/melt varies from 0.031 ± 0.005 at XCO2 = 0.03 to 0.017 ± 0.003 at XCO2 = 0.34 (where XCO2 =CO2/H2O+CO2 in wt). The variation of DH2Ocpx/melt as a function of XCO2 is described by a power law in the form: DH2Ocpx/melt=0.0123XCO2-0.237, with an extrapolated DH2Ocpx/melt of 0.033 at XCO2 = 0. The calculated DH2Ocpx/melt is combined with DH2Ogrt/cpx to constrain the effect of CO2 on the H2O partition coefficient between an eclogite and a melt (DH2Oeclo/melt), which is then used to predict the melting temperature of eclogite in a hydrous-carbonated system. The results show that melting of hydrous-carbonated eclogite (600 ppm wt H2O-300 ppm wt CO2) occurs at temperatures drastically lower than those of both purely hydrous and purely carbonated melting. In this scenario, the temperature of hydrous carbonated melting of eclogite remains lower than the mantle adiabat and crosses the geotherm of the hottest subduction zones at P > 5.8 GPa, indicating that the oceanic crust in a subducting slab could undergo partial melting at this pressure. In addition, DH2Oeclo/melt is used in a simple mass balance model to constrain the H2O content of a mantle source lithology of HIMU melts, suggested to be made mainly of recycled oceanic crust. The model, using DH2Oeclo/melt at XCO2 values of 0, 0.1 and 0.3, indicates that partial melting of eclogite with a bulk H2O content ranging from ∼300 to ∼720 ppm wt can potentially explain the H2O abundance measured in magmas originating from the HIMU mantle reservoir.
CO2对斜辉石与熔体之间H2O分配及含挥发物榴辉岩熔融的影响
水和二氧化碳是地球上生命发展和维持的关键成分,影响着各种各样的地质过程。有人认为,地幔中二氧化碳的存在可能会改变水在矿物和熔体之间的储存和分配方式,这意味着对地球地幔的融化过程和水储存能力都有巨大的影响。榴辉岩以非均质形式存在于地幔中,参与了海海岛玄武岩(High-µ,µ= 238U/204Pb)的形成。它们可以在斜斜辉石中容纳大量的水,它们的水储存能力和熔化温度会受到二氧化碳存在的显著影响。在高压高温条件下,通过1200℃、2 GPa的活塞缸实验,探讨了CO2对斜生石与熔体(dh20ocpx /melt=CH2Ocpx/CH2Omelt)之间H2O分配系数的影响。实验采用了不同浓度的H2O和CO2的玄武岩起始混合物,并产生了由超过60%的玄武岩-安山岩熔体和高al (Al2O3 = 7.83-11.18 wt%)斜辉石晶体平衡组成的组合。傅里叶红外光谱测定斜辉石中H2O的浓度范围为869±71 ~ 1950±134 ppm wt,与体系中CO2的浓度呈负相关,与斜辉石中四面体配位的Al3+呈正相关。淬火熔体的H2O和CO2浓度分别为5.18 ~ 6.97 wt%和0.19 ~ 2.59 wt%。计算的DH2Ocpx/melt在XCO2= 0.03时为0.031±0.005,在XCO2= 0.34时为0.017±0.003(其中XCO2=CO2/H2O+CO2以wt计)。DH2Ocpx/melt随XCO2的变化可以用幂律的形式描述:DH2Ocpx/melt=0.0123 * XCO2-0.237,外推在XCO2 =0时DH2Ocpx/melt为0.033。将计算得到的dh20ocpx /melt与DH2Ogrt/cpx相结合,约束CO2对榴辉岩与熔体之间的水分配系数(DH2Oeclo/melt)的影响,并以此预测榴辉岩在碳酸体系中的熔融温度。结果表明,含水碳酸榴辉岩(600 ppm wt H2O-300 ppm wt CO2)的熔融温度明显低于纯含水和纯碳酸熔融温度。在这种情况下,榴辉岩的含水碳酸化熔融温度仍然低于地幔绝热层,并穿过P >地区最热俯冲带的地热;5.8 GPa,表明俯冲板块的洋壳在此压力下可能发生部分熔融。此外,在一个简单的质量平衡模型中使用DH2Oeclo/melt来约束HIMU熔体地幔源岩性的H2O含量,表明其主要由回收的海洋地壳组成。该模型使用XCO2值为0、0.1和0.3时的DH2Oeclo/melt,表明部分熔融的榴辉岩体积H2O含量在~ 300 ~ ~ 720 ppm wt之间,可以潜在地解释源自HIMU地幔储层的岩浆中测量到的H2O丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信