Bayesian calibration of the 40K decay scheme with implications for 40K-based geochronology

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Jack N. Carter , Caroline E.J. Hasler , Anthony J. Fuentes , Andrew J. Tholt , Leah E. Morgan , Paul R. Renne
{"title":"Bayesian calibration of the 40K decay scheme with implications for 40K-based geochronology","authors":"Jack N. Carter ,&nbsp;Caroline E.J. Hasler ,&nbsp;Anthony J. Fuentes ,&nbsp;Andrew J. Tholt ,&nbsp;Leah E. Morgan ,&nbsp;Paul R. Renne","doi":"10.1016/j.gca.2025.03.024","DOIUrl":null,"url":null,"abstract":"<div><div>The K/Ar and <sup>40</sup>Ar/<sup>39</sup>Ar geochronometers are based on the naturally occurring radionuclide <sup>40</sup>K. Their precision and accuracy are limited by uncertainties on the <sup>40</sup>K decay constants and, in the case of the <sup>40</sup>Ar/<sup>39</sup>Ar geochronometer, the isotopic composition of neutron fluence monitors. To address these limitations, we introduce a Bayesian calibration of the <sup>40</sup>K decay scheme. We formulate robust priors for all model parameters including partial <sup>40</sup>K decay constants, <sup>238</sup>U and <sup>235</sup>U decay constants, and age offset parameters to account for phenomena that can perturb apparent U-Pb and <sup>40</sup>Ar/<sup>39</sup>Ar ages. We then harness a set of complementary <sup>40</sup>Ar/<sup>39</sup>Ar, <sup>238</sup>U/<sup>206</sup>Pb, and <sup>235</sup>U/<sup>207</sup>Pb data from well- characterized geological samples with ages from 1.919 ka to 2000 Ma to derive Bayesian estimates of the <sup>40</sup>K decay constants. Posterior values for the partial <sup>40</sup>K decay constants are <span><math><mrow><msub><mi>λ</mi><msup><mrow><mi>β</mi></mrow><mo>-</mo></msup></msub></mrow></math></span>= (4.9252 <span><math><mrow><mo>±</mo></mrow></math></span> 0.0054) <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−10</sup> yr<sup>−1</sup>, <span><math><mrow><msub><mi>λ</mi><msup><mrow><mi>β</mi></mrow><mo>+</mo></msup></msub></mrow></math></span> = (5.6658 <span><math><mrow><mo>±</mo></mrow></math></span> 0.1543) <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−15</sup> yr<sup>−1</sup>, <span><math><mrow><msub><mi>λ</mi><msup><mrow><mi>EC</mi></mrow><mrow><mo>∗</mo></mrow></msup></msub></mrow></math></span> = (5.7404 <span><math><mrow><mo>±</mo></mrow></math></span> 0.0053) <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−11</sup> yr<sup>−1</sup>, and <span><math><mrow><msub><mi>λ</mi><msub><mrow><mi>EC</mi></mrow><mn>0</mn></msub></msub></mrow></math></span>= (4.9060 <span><math><mrow><mo>±</mo></mrow></math></span> 0.2942) <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−13</sup> yr<sup>−1</sup> (uncertainties reported at the 68 % (1<span><math><mrow><mi>σ</mi></mrow></math></span>) credible interval). These combine to a total <sup>40</sup>K decay constant <span><math><mrow><msub><mi>λ</mi><mrow><mi>tot</mi></mrow></msub></mrow></math></span>= (5.5042 <span><math><mrow><mo>±</mo></mrow></math></span> 0.0054) <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−10</sup> yr<sup>−1</sup>. Model estimates of the <sup>238</sup>U and <sup>235</sup>U decay constants are statistically indistinguishable from those reported by <span><span>Jaffey et al. (1971)</span></span>. Posterior values of the <sup>40</sup>K decay constants and the <sup>40</sup>Ar*/<sup>40</sup>K isotopic composition of Fish Canyon sanidine (FCs) define a K/Ar FCs age of 28.183 <span><math><mrow><mo>±</mo></mrow></math></span> 0.017 Ma (1<span><math><mrow><mi>σ</mi></mrow></math></span>). Significantly, Bayesian calibrated <sup>40</sup>Ar/<sup>39</sup>Ar ages align with astronomically tuned ages throughout the Cenozoic and with <sup>238</sup>U/<sup>206</sup>Pb and <sup>235</sup>U/<sup>207</sup>Pb ages in the Mesozoic, Paleozoic, and Proterozoic, as well as having comparable precision to the <sup>238</sup>U/<sup>206</sup>Pb method. Thus, Bayesian calibration of the <sup>40</sup>K decay scheme and the K/Ar age of FCs reconciles the <sup>40</sup>Ar/<sup>39</sup>Ar, U-Pb, and astronomical chronometers.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"397 ","pages":"Pages 149-163"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725001620","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The K/Ar and 40Ar/39Ar geochronometers are based on the naturally occurring radionuclide 40K. Their precision and accuracy are limited by uncertainties on the 40K decay constants and, in the case of the 40Ar/39Ar geochronometer, the isotopic composition of neutron fluence monitors. To address these limitations, we introduce a Bayesian calibration of the 40K decay scheme. We formulate robust priors for all model parameters including partial 40K decay constants, 238U and 235U decay constants, and age offset parameters to account for phenomena that can perturb apparent U-Pb and 40Ar/39Ar ages. We then harness a set of complementary 40Ar/39Ar, 238U/206Pb, and 235U/207Pb data from well- characterized geological samples with ages from 1.919 ka to 2000 Ma to derive Bayesian estimates of the 40K decay constants. Posterior values for the partial 40K decay constants are λβ-= (4.9252 ± 0.0054) × 10−10 yr−1, λβ+ = (5.6658 ± 0.1543) × 10−15 yr−1, λEC = (5.7404 ± 0.0053) × 10−11 yr−1, and λEC0= (4.9060 ± 0.2942) × 10−13 yr−1 (uncertainties reported at the 68 % (1σ) credible interval). These combine to a total 40K decay constant λtot= (5.5042 ± 0.0054) × 10−10 yr−1. Model estimates of the 238U and 235U decay constants are statistically indistinguishable from those reported by Jaffey et al. (1971). Posterior values of the 40K decay constants and the 40Ar*/40K isotopic composition of Fish Canyon sanidine (FCs) define a K/Ar FCs age of 28.183 ± 0.017 Ma (1σ). Significantly, Bayesian calibrated 40Ar/39Ar ages align with astronomically tuned ages throughout the Cenozoic and with 238U/206Pb and 235U/207Pb ages in the Mesozoic, Paleozoic, and Proterozoic, as well as having comparable precision to the 238U/206Pb method. Thus, Bayesian calibration of the 40K decay scheme and the K/Ar age of FCs reconciles the 40Ar/39Ar, U-Pb, and astronomical chronometers.
40K衰减方案的贝叶斯校准及其对40K地质年代学的影响
K/Ar和40Ar/39Ar地球时计是基于自然产生的放射性核素40K。它们的精度和准确性受到40K衰变常数和40Ar/39Ar地球计时器的不确定性的限制,在40Ar/39Ar地球计时器的情况下,中子通量监测仪的同位素组成。为了解决这些限制,我们引入了40K衰减方案的贝叶斯校准。我们为所有模型参数制定了稳健的先验,包括部分40K衰变常数、238U和235U衰变常数以及年龄偏移参数,以解释可能干扰表观U-Pb和40Ar/39Ar年龄的现象。然后,我们利用一组互补的40Ar/39Ar, 238U/206Pb和235U/207Pb数据,从年龄为1.919 ka到2000 Ma的地质样品中得到40K衰变常数的贝叶斯估计。部分40K衰变常数的后验值为λβ-=(4.9252±0.0054)× 10−10 yr−1,λβ+ =(5.6658±0.1543)× 10−15 yr−1,λEC∗=(5.7404±0.0053)× 10−11 yr−1,λEC0=(4.9060±0.2942)× 10−13 yr−1(不确定性报告在68% (1σ)可信区间)。这些组合得到40K衰变常数λtot=(5.5042±0.0054)× 10−10 yr−1。238U和235U衰变常数的模型估计值在统计上与Jaffey等人(1971)报告的结果无法区分。Fish Canyon sanidine (FCs)的40K衰变常数和40Ar*/40K同位素组成的后验值确定其K/Ar年龄为28.183±0.017 Ma (1σ)。值得注意的是,贝叶斯校准的40Ar/39Ar年龄与整个新生代的天文校正年龄一致,与中生代、古生代和元古代的238U/206Pb和235U/207Pb年龄一致,精度与238U/206Pb方法相当。因此,40K衰变方案和fc的K/Ar年龄的贝叶斯校准与40Ar/39Ar, U-Pb和天文天文钟相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信