Effect of 2-D Turntable Pointing Performance of a Moon-Based Sensor on Geolocation Accuracy

Yin Jin;Huadong Guo;Mengxiong Zhou;Hanlin Ye;Guang Liu
{"title":"Effect of 2-D Turntable Pointing Performance of a Moon-Based Sensor on Geolocation Accuracy","authors":"Yin Jin;Huadong Guo;Mengxiong Zhou;Hanlin Ye;Guang Liu","doi":"10.1109/LGRS.2025.3556099","DOIUrl":null,"url":null,"abstract":"A Moon-based sensor offers a unique view for continuous Earth observation. The 2-D turntable’s pointing performance is a critical factor influencing geolocation accuracy. The vast distance between the Earth and the Moon amplifies minor pointing errors of the turntable into significant geolocation inaccuracy. By establishing a geometric model, an analytic expression of Earth’s trajectory from the Moon-based view is derived. Three critical issues are discussed: 1) the Earth’s 18.6-year trajectory forms a <inline-formula> <tex-math>$16^{\\circ } \\times 14^{\\circ }$ </tex-math></inline-formula> envelope, which determines the observation range for the sensor. The rotation angle and position of the envelope vary at different lunar locations, while its size and shape remain consistent; 2) geolocation errors caused by temporal interval vary periodically with a half-sidereal month cycle and can be compensated by calculating Earth’s velocity, while errors due to the step angle show irregular oscillations. Without calibration, both parameters can introduce geolocation errors on the scale of hundreds of kilometers. Reducing both parameters can significantly improve geolocation accuracy; and 3) even with optimization of both parameters, the geolocation accuracy cannot be reduced to within a single pixel. To achieve geolocation accuracy within design requirements, it is necessary to not only optimize these two factors but also adopt additional measures to improve precision. All these insights will inform the parameter optimization and design of the Moon-based sensor for future applications.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945889/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Moon-based sensor offers a unique view for continuous Earth observation. The 2-D turntable’s pointing performance is a critical factor influencing geolocation accuracy. The vast distance between the Earth and the Moon amplifies minor pointing errors of the turntable into significant geolocation inaccuracy. By establishing a geometric model, an analytic expression of Earth’s trajectory from the Moon-based view is derived. Three critical issues are discussed: 1) the Earth’s 18.6-year trajectory forms a $16^{\circ } \times 14^{\circ }$ envelope, which determines the observation range for the sensor. The rotation angle and position of the envelope vary at different lunar locations, while its size and shape remain consistent; 2) geolocation errors caused by temporal interval vary periodically with a half-sidereal month cycle and can be compensated by calculating Earth’s velocity, while errors due to the step angle show irregular oscillations. Without calibration, both parameters can introduce geolocation errors on the scale of hundreds of kilometers. Reducing both parameters can significantly improve geolocation accuracy; and 3) even with optimization of both parameters, the geolocation accuracy cannot be reduced to within a single pixel. To achieve geolocation accuracy within design requirements, it is necessary to not only optimize these two factors but also adopt additional measures to improve precision. All these insights will inform the parameter optimization and design of the Moon-based sensor for future applications.
月基传感器的二维转盘指向性能对地理定位精度的影响
基于月球的传感器为连续地球观测提供了独特的视角。二维转台的指向性能是影响地理定位精度的关键因素。地球与月球之间的巨大距离会将转台的微小指向误差放大为显著的地理定位精度误差。通过建立一个几何模型,得出了从月球视角看地球轨迹的分析表达式。本文讨论了三个关键问题:1)地球 18.6 年的轨迹形成了一个 16^{\circ } 美元\times 14^{\circ }$ 的包络线,它决定了传感器的观测范围。在不同的月球位置,包络线的旋转角度和位置不同,但其大小和形状保持一致;2)由时间间隔引起的地理定位误差随半恒星月周期周期性变化,可以通过计算地球速度来补偿,而由阶跃角引起的误差则表现为不规则的振荡。如果不进行校准,这两个参数会带来数百公里的地理定位误差。降低这两个参数可以显著提高地理定位精度;以及 3) 即使优化了这两个参数,地理定位精度也无法降低到一个像素以内。要使地理定位精度达到设计要求,不仅需要优化这两个因素,还需要采取其他措施来提高精度。所有这些见解都将为未来应用中的月基传感器的参数优化和设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信