Kleinecke–Shirokov theorem: a version for isometric transformations

IF 1.6 3区 数学 Q1 MATHEMATICS
Hranislav Stanković
{"title":"Kleinecke–Shirokov theorem: a version for isometric transformations","authors":"Hranislav Stanković","doi":"10.1007/s13324-025-01057-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a version of the Kleinecke–Shirokov Theorem applicable to isometries on a Hilbert space <span>\\({\\mathcal {H}}\\)</span>. Specifically, we demonstrate that if <span>\\( V \\in {\\mathfrak {B}}({\\mathcal {H}})\\)</span> is a quasinormal partial isometry and <span>\\(T \\in {\\mathfrak {B}}({\\mathcal {H}})\\)</span> satisfies <span>\\({\\mathcal {R}}(T) \\subseteq {\\mathcal {R}}(V)\\)</span>, then </p><div><div><span>$$\\begin{aligned} [V,[V,T]]=0\\quad \\implies \\quad [V,T]=0. \\end{aligned}$$</span></div></div><p>We also consider the mixed commutators of two isometries, and their belonging to the Schatten-von Neumann classes. Finally, we show that the corresponding classical statement regarding normal operators can be derived from our results.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01057-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a version of the Kleinecke–Shirokov Theorem applicable to isometries on a Hilbert space \({\mathcal {H}}\). Specifically, we demonstrate that if \( V \in {\mathfrak {B}}({\mathcal {H}})\) is a quasinormal partial isometry and \(T \in {\mathfrak {B}}({\mathcal {H}})\) satisfies \({\mathcal {R}}(T) \subseteq {\mathcal {R}}(V)\), then

$$\begin{aligned} [V,[V,T]]=0\quad \implies \quad [V,T]=0. \end{aligned}$$

We also consider the mixed commutators of two isometries, and their belonging to the Schatten-von Neumann classes. Finally, we show that the corresponding classical statement regarding normal operators can be derived from our results.

克莱涅克-希罗科夫定理:等距变换的版本
在本文中,我们提出了适用于希尔伯特空间 \({\mathcal {H}}\) 上等距的克莱因克-希罗科夫定理的一个版本。具体来说,我们证明了如果 \( V \in {\mathfrak {B}}({\mathcal {H}}) 是一个准正局部等距,并且 \(T \in {\mathfrak {B}}({\mathcal {H}}) 满足 \({\mathcal {R}}(T) \subseteq {\mathcal {R}}(V)\)、then $$\begin{aligned} [V,[V,T]]=0\quad \implies \quad [V,T]=0.\end{aligned}$$ 我们还考虑了两个等元体的混合换元,以及它们属于沙腾-冯-诺依曼类。最后,我们证明,从我们的结果可以推导出关于正算子的相应经典陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信