Anagha M.G. , Piotr Kubisiak , Paulina Chytrosz-Wróbel , Monika Gołda-Cępa , Lukasz Cwiklik , Waldemar Kulig , Andrzej Kotarba
{"title":"Unraveling the effect of water and ethanol on ibuprofen nanoparticles formation","authors":"Anagha M.G. , Piotr Kubisiak , Paulina Chytrosz-Wróbel , Monika Gołda-Cępa , Lukasz Cwiklik , Waldemar Kulig , Andrzej Kotarba","doi":"10.1016/j.molliq.2025.127563","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate how water and ethanol affect the formation of ibuprofen sodium salt nanoparticles. Particle sizes were measured with the use of Nanoparticle Tracking Analysis and Transmission Electron Microscopy at concentrations of 30, 50, and 80 mg/mL. In water, nanoparticles had an average size of 93 nm, whereas in ethanol they were significantly smaller, averaging 36 nm. Molecular dynamics simulations revealed that in water, ibuprofen molecules aggregate into clusters of 80–300 molecules. In ethanol, stronger ibuprofen-ethanol interactions lead to the formation of much smaller clusters of 2–3 molecules. Both experimental data and simulations indicate that ethanol is a superior solvent for ibuprofen nanosizing. These findings provide a rational basis for selecting solvents in drug formulation and offer a broader perspective for optimizing drug delivery applications.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"428 ","pages":"Article 127563"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225007305","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate how water and ethanol affect the formation of ibuprofen sodium salt nanoparticles. Particle sizes were measured with the use of Nanoparticle Tracking Analysis and Transmission Electron Microscopy at concentrations of 30, 50, and 80 mg/mL. In water, nanoparticles had an average size of 93 nm, whereas in ethanol they were significantly smaller, averaging 36 nm. Molecular dynamics simulations revealed that in water, ibuprofen molecules aggregate into clusters of 80–300 molecules. In ethanol, stronger ibuprofen-ethanol interactions lead to the formation of much smaller clusters of 2–3 molecules. Both experimental data and simulations indicate that ethanol is a superior solvent for ibuprofen nanosizing. These findings provide a rational basis for selecting solvents in drug formulation and offer a broader perspective for optimizing drug delivery applications.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.