Unraveling the effect of water and ethanol on ibuprofen nanoparticles formation

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Anagha M.G. , Piotr Kubisiak , Paulina Chytrosz-Wróbel , Monika Gołda-Cępa , Lukasz Cwiklik , Waldemar Kulig , Andrzej Kotarba
{"title":"Unraveling the effect of water and ethanol on ibuprofen nanoparticles formation","authors":"Anagha M.G. ,&nbsp;Piotr Kubisiak ,&nbsp;Paulina Chytrosz-Wróbel ,&nbsp;Monika Gołda-Cępa ,&nbsp;Lukasz Cwiklik ,&nbsp;Waldemar Kulig ,&nbsp;Andrzej Kotarba","doi":"10.1016/j.molliq.2025.127563","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate how water and ethanol affect the formation of ibuprofen sodium salt nanoparticles. Particle sizes were measured with the use of Nanoparticle Tracking Analysis and Transmission Electron Microscopy at concentrations of 30, 50, and 80 mg/mL. In water, nanoparticles had an average size of 93 nm, whereas in ethanol they were significantly smaller, averaging 36 nm. Molecular dynamics simulations revealed that in water, ibuprofen molecules aggregate into clusters of 80–300 molecules. In ethanol, stronger ibuprofen-ethanol interactions lead to the formation of much smaller clusters of 2–3 molecules. Both experimental data and simulations indicate that ethanol is a superior solvent for ibuprofen nanosizing. These findings provide a rational basis for selecting solvents in drug formulation and offer a broader perspective for optimizing drug delivery applications.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"428 ","pages":"Article 127563"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225007305","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate how water and ethanol affect the formation of ibuprofen sodium salt nanoparticles. Particle sizes were measured with the use of Nanoparticle Tracking Analysis and Transmission Electron Microscopy at concentrations of 30, 50, and 80 mg/mL. In water, nanoparticles had an average size of 93 nm, whereas in ethanol they were significantly smaller, averaging 36 nm. Molecular dynamics simulations revealed that in water, ibuprofen molecules aggregate into clusters of 80–300 molecules. In ethanol, stronger ibuprofen-ethanol interactions lead to the formation of much smaller clusters of 2–3 molecules. Both experimental data and simulations indicate that ethanol is a superior solvent for ibuprofen nanosizing. These findings provide a rational basis for selecting solvents in drug formulation and offer a broader perspective for optimizing drug delivery applications.

Abstract Image

揭示水和乙醇对布洛芬纳米颗粒形成的影响
在这项研究中,我们研究了水和乙醇如何影响布洛芬钠盐纳米颗粒的形成。在浓度为30mg /mL、50mg /mL和80mg /mL时,使用纳米颗粒跟踪分析和透射电子显微镜测量颗粒大小。在水中,纳米粒子的平均尺寸为93纳米,而在乙醇中,它们明显更小,平均为36纳米。分子动力学模拟显示,在水中,布洛芬分子聚集成80-300个分子的簇。在乙醇中,更强的布洛芬-乙醇相互作用导致形成小得多的2-3个分子簇。实验数据和模拟结果表明,乙醇是布洛芬纳米化的较好溶剂。这些发现为药物配方中溶剂的合理选择提供了依据,并为优化给药应用提供了更广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信