{"title":"Neural network solutions to the critical SQG equations via approximating nonlocal periodic operators","authors":"Elie Abdo , Ruimeng Hu , Quyuan Lin","doi":"10.1016/j.physd.2025.134652","DOIUrl":null,"url":null,"abstract":"<div><div>Nonlocal periodic operators in partial differential equations (PDEs) pose challenges in constructing neural network solutions, which typically lack periodic boundary conditions. In this paper, we introduce a novel PDE perspective on approximating these nonlocal periodic operators. Specifically, we investigate the behavior of the periodic first-order fractional Laplacian and Riesz transform when acting on nonperiodic functions, thereby initiating a new PDE theory for approximating solutions to equations with nonlocalities using neural networks. Moreover, we derive quantitative Sobolev estimates and utilize them to rigorously construct neural networks that approximate solutions to the two-dimensional periodic critically dissipative Surface Quasi-Geostrophic (SQG) equation.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134652"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001319","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlocal periodic operators in partial differential equations (PDEs) pose challenges in constructing neural network solutions, which typically lack periodic boundary conditions. In this paper, we introduce a novel PDE perspective on approximating these nonlocal periodic operators. Specifically, we investigate the behavior of the periodic first-order fractional Laplacian and Riesz transform when acting on nonperiodic functions, thereby initiating a new PDE theory for approximating solutions to equations with nonlocalities using neural networks. Moreover, we derive quantitative Sobolev estimates and utilize them to rigorously construct neural networks that approximate solutions to the two-dimensional periodic critically dissipative Surface Quasi-Geostrophic (SQG) equation.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.