Neural network solutions to the critical SQG equations via approximating nonlocal periodic operators

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Elie Abdo , Ruimeng Hu , Quyuan Lin
{"title":"Neural network solutions to the critical SQG equations via approximating nonlocal periodic operators","authors":"Elie Abdo ,&nbsp;Ruimeng Hu ,&nbsp;Quyuan Lin","doi":"10.1016/j.physd.2025.134652","DOIUrl":null,"url":null,"abstract":"<div><div>Nonlocal periodic operators in partial differential equations (PDEs) pose challenges in constructing neural network solutions, which typically lack periodic boundary conditions. In this paper, we introduce a novel PDE perspective on approximating these nonlocal periodic operators. Specifically, we investigate the behavior of the periodic first-order fractional Laplacian and Riesz transform when acting on nonperiodic functions, thereby initiating a new PDE theory for approximating solutions to equations with nonlocalities using neural networks. Moreover, we derive quantitative Sobolev estimates and utilize them to rigorously construct neural networks that approximate solutions to the two-dimensional periodic critically dissipative Surface Quasi-Geostrophic (SQG) equation.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134652"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001319","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlocal periodic operators in partial differential equations (PDEs) pose challenges in constructing neural network solutions, which typically lack periodic boundary conditions. In this paper, we introduce a novel PDE perspective on approximating these nonlocal periodic operators. Specifically, we investigate the behavior of the periodic first-order fractional Laplacian and Riesz transform when acting on nonperiodic functions, thereby initiating a new PDE theory for approximating solutions to equations with nonlocalities using neural networks. Moreover, we derive quantitative Sobolev estimates and utilize them to rigorously construct neural networks that approximate solutions to the two-dimensional periodic critically dissipative Surface Quasi-Geostrophic (SQG) equation.
基于非局部周期算子的临界SQG方程的神经网络解
偏微分方程中的非局部周期算子给神经网络解的构造带来了挑战,而神经网络解通常缺乏周期边界条件。在本文中,我们引入了一种新的PDE视角来逼近这些非局部周期算子。具体地说,我们研究了周期一阶分数阶拉普拉斯变换和Riesz变换在作用于非周期函数时的行为,从而开创了一种新的PDE理论,用于利用神经网络近似非定域方程的解。此外,我们导出了定量的Sobolev估计,并利用它们严格构建了近似二维周期临界耗散曲面准地转(SQG)方程解的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信