{"title":"Mapping Cell Identity from scRNA-seq: A primer on computational methods","authors":"Daniele Traversa, Matteo Chiara","doi":"10.1016/j.csbj.2025.03.051","DOIUrl":null,"url":null,"abstract":"<div><div>Single cell (sc) technologies mark a conceptual and methodological breakthrough in our way to study cells, the base units of life. Thanks to these technological developments, large-scale initiatives are currently ongoing aimed at mapping of all the cell types in the human body, with the ambitious aim to gain a cell-level resolution of physiological development and disease. Since its broad applicability and ease of interpretation scRNA-seq is probably the most common sc-based application. This assay uses high throughput RNA sequencing to capture gene expression profiles at the sc-level. Subsequently, under the assumption that differences in transcriptional programs correspond to distinct cellular identities, <em>ad-hoc</em> computational methods are used to infer cell types from gene expression patterns. A wide array of computational methods were developed for this task. However, depending on the underlying algorithmic approach and associated computational requirements, each method might have a specific range of application, with implications that are not always clear to the end user. Here we will provide a concise overview on state-of-the-art computational methods for cell identity annotation in scRNA-seq, tailored for new users and non-computational scientists. To this end, we classify existing tools in five main categories, and discuss their key strengths, limitations and range of application.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 1559-1569"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025001199","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single cell (sc) technologies mark a conceptual and methodological breakthrough in our way to study cells, the base units of life. Thanks to these technological developments, large-scale initiatives are currently ongoing aimed at mapping of all the cell types in the human body, with the ambitious aim to gain a cell-level resolution of physiological development and disease. Since its broad applicability and ease of interpretation scRNA-seq is probably the most common sc-based application. This assay uses high throughput RNA sequencing to capture gene expression profiles at the sc-level. Subsequently, under the assumption that differences in transcriptional programs correspond to distinct cellular identities, ad-hoc computational methods are used to infer cell types from gene expression patterns. A wide array of computational methods were developed for this task. However, depending on the underlying algorithmic approach and associated computational requirements, each method might have a specific range of application, with implications that are not always clear to the end user. Here we will provide a concise overview on state-of-the-art computational methods for cell identity annotation in scRNA-seq, tailored for new users and non-computational scientists. To this end, we classify existing tools in five main categories, and discuss their key strengths, limitations and range of application.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology