BCOR-rearranged sarcomas: In silico insights into altered domains and BCOR interactions

IF 7 2区 医学 Q1 BIOLOGY
Kristóf Madarász , János András Mótyán , Yi-Che Chang Chien , Judit Bedekovics , Szilvia Lilla Csoma , Gábor Méhes , Attila Mokánszki
{"title":"BCOR-rearranged sarcomas: In silico insights into altered domains and BCOR interactions","authors":"Kristóf Madarász ,&nbsp;János András Mótyán ,&nbsp;Yi-Che Chang Chien ,&nbsp;Judit Bedekovics ,&nbsp;Szilvia Lilla Csoma ,&nbsp;Gábor Méhes ,&nbsp;Attila Mokánszki","doi":"10.1016/j.compbiomed.2025.110144","DOIUrl":null,"url":null,"abstract":"<div><div>BCOR (BCL-6 corepressor) rearranged small round cell sarcoma (BRS) represents an uncommon soft tissue malignancy, frequently characterized by the <em>BCOR</em>::<em>CCNB3</em> fusion. Other noteworthy fusions include <em>BCOR</em>::<em>MAML3</em>, <em>BCOR</em>::<em>CLGN</em>, <em>BCOR</em>::<em>MAML1</em>, <em>ZC3H7B</em>::<em>BCOR</em>, <em>KMT2D</em>::<em>BCOR</em>, <em>CIITA</em>::<em>BCOR</em>, <em>RTL9</em>::<em>BCOR</em>, and <em>AHR</em>::<em>BCOR</em>. The <em>BCOR</em> gene plays a pivotal role in the Polycomb Repressive Complex 1 (PRC1), essential for histone modification and gene silencing. It interfaces with the Polycomb group RING finger homolog (PCGF1). This study employed comprehensive <em>in silico</em> methodologies to investigate the structural and functional effects of <em>BCOR</em> fusion events in BRS. The analysis revealed significant alterations in the domain architecture of BCOR, which resulted in the loss of <em>BCL6</em>-regulated transcriptional repression. Furthermore, IUPred3 prediction indicated a significant increase in disorder in the C-terminal regions of the BCOR in the fusion proteins. A detailed analysis of the physicochemical properties by ProtParam revealed a decrease in isoelectric point, stability, and hydrophobicity. The analysis of protein structures predicted by AlphaFold3 using the PRODIGY algorithm revealed statistically significant deviations in binding affinities for BCOR-PCGF1 dimers and a non-canonical PRC1 variant tetramer compared to the wild-type BCOR. The findings provide a comprehensive summary and elucidation of the fusion proteome associated with BRS, suggesting a substantial impact on the stability and functionality of the fusion proteins, thereby contributing to the oncogenic mechanisms underlying BRS. In this study, we provide the first compilation and comparative analysis of the known BCOR fusions of BRS and introduce a new <em>in silico</em> approach to enhance a better understanding of the molecular basis of BRS.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 110144"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525004950","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BCOR (BCL-6 corepressor) rearranged small round cell sarcoma (BRS) represents an uncommon soft tissue malignancy, frequently characterized by the BCOR::CCNB3 fusion. Other noteworthy fusions include BCOR::MAML3, BCOR::CLGN, BCOR::MAML1, ZC3H7B::BCOR, KMT2D::BCOR, CIITA::BCOR, RTL9::BCOR, and AHR::BCOR. The BCOR gene plays a pivotal role in the Polycomb Repressive Complex 1 (PRC1), essential for histone modification and gene silencing. It interfaces with the Polycomb group RING finger homolog (PCGF1). This study employed comprehensive in silico methodologies to investigate the structural and functional effects of BCOR fusion events in BRS. The analysis revealed significant alterations in the domain architecture of BCOR, which resulted in the loss of BCL6-regulated transcriptional repression. Furthermore, IUPred3 prediction indicated a significant increase in disorder in the C-terminal regions of the BCOR in the fusion proteins. A detailed analysis of the physicochemical properties by ProtParam revealed a decrease in isoelectric point, stability, and hydrophobicity. The analysis of protein structures predicted by AlphaFold3 using the PRODIGY algorithm revealed statistically significant deviations in binding affinities for BCOR-PCGF1 dimers and a non-canonical PRC1 variant tetramer compared to the wild-type BCOR. The findings provide a comprehensive summary and elucidation of the fusion proteome associated with BRS, suggesting a substantial impact on the stability and functionality of the fusion proteins, thereby contributing to the oncogenic mechanisms underlying BRS. In this study, we provide the first compilation and comparative analysis of the known BCOR fusions of BRS and introduce a new in silico approach to enhance a better understanding of the molecular basis of BRS.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信