Acidizing of deep carbonate reservoirs to reduce breakdown pressure: A review

0 ENERGY & FUELS
Pingli Liu , Yu Wu , Xiang Chen , Wen Luo , Jinming Liu , Pengfei Chen , Gang Xiong , Juan Du
{"title":"Acidizing of deep carbonate reservoirs to reduce breakdown pressure: A review","authors":"Pingli Liu ,&nbsp;Yu Wu ,&nbsp;Xiang Chen ,&nbsp;Wen Luo ,&nbsp;Jinming Liu ,&nbsp;Pengfei Chen ,&nbsp;Gang Xiong ,&nbsp;Juan Du","doi":"10.1016/j.geoen.2025.213856","DOIUrl":null,"url":null,"abstract":"<div><div>Acid treatments aimed at reducing formation breakdown pressure are becoming increasingly popular in stimulating deep and ultra-deep geothermal and natural gas reservoirs, where high pumping pressures are typically required for fracturing. This technique effectively reduces surface pumping pressures, ensuring safe operations. Through multiscale experiments and mechanistic analysis, this study reveals the fundamental mechanisms underlying breakdown pressure reduction via acid preconditioning. Key findings include: (1) High breakdown pressures arise from high in-situ stress, low porosity and permeability, and engineering contamination. (2) Acid-induced mineral dissolution triggers dual effects-pore structure evolution enhances reservoir permeability (facilitating subsequent fracturing fluid imbibition and pressure transmission), while mechanical property degradation substantially weakens rock resistance to fracturing. (3) Comparative analysis of HCl, organic acids, and chelating agents demonstrates that high-temperature reservoirs benefit from low-corrosivity chelating agents (e.g., GLDA) or organic acid systems combined with low-concentration HCl, achieving optimal dissolution efficiency while ensuring wellbore integrity. (4) A multiscale laboratory evaluation framework was established to integrate experimental data for optimizing acid formulations and post-acid fracturing strategies. This paper provides mechanistic insights, acid system selection criteria, and experimental methodologies for breakdown pressure reduction in deep carbonate reservoirs, offering significant engineering value for achieving safe and efficient reservoir stimulation.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"251 ","pages":"Article 213856"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025002143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Acid treatments aimed at reducing formation breakdown pressure are becoming increasingly popular in stimulating deep and ultra-deep geothermal and natural gas reservoirs, where high pumping pressures are typically required for fracturing. This technique effectively reduces surface pumping pressures, ensuring safe operations. Through multiscale experiments and mechanistic analysis, this study reveals the fundamental mechanisms underlying breakdown pressure reduction via acid preconditioning. Key findings include: (1) High breakdown pressures arise from high in-situ stress, low porosity and permeability, and engineering contamination. (2) Acid-induced mineral dissolution triggers dual effects-pore structure evolution enhances reservoir permeability (facilitating subsequent fracturing fluid imbibition and pressure transmission), while mechanical property degradation substantially weakens rock resistance to fracturing. (3) Comparative analysis of HCl, organic acids, and chelating agents demonstrates that high-temperature reservoirs benefit from low-corrosivity chelating agents (e.g., GLDA) or organic acid systems combined with low-concentration HCl, achieving optimal dissolution efficiency while ensuring wellbore integrity. (4) A multiscale laboratory evaluation framework was established to integrate experimental data for optimizing acid formulations and post-acid fracturing strategies. This paper provides mechanistic insights, acid system selection criteria, and experimental methodologies for breakdown pressure reduction in deep carbonate reservoirs, offering significant engineering value for achieving safe and efficient reservoir stimulation.
深层碳酸盐岩储层酸化降低破裂压力研究进展
在深层和超深层地热和天然气储层压裂中,旨在降低地层破裂压力的酸处理越来越受欢迎,因为这些储层的压裂通常需要高泵送压力。该技术有效降低了地面泵送压力,确保了作业安全。通过多尺度实验和机理分析,揭示了酸预处理降低击穿压力的基本机理。主要发现包括:(1)高地应力、低孔隙度和渗透率以及工程污染导致高破裂压力。(2)酸致矿物溶解产生双重效应:孔隙结构演化提高了储层渗透率(有利于后续压裂液的渗吸和压力传递),而力学性质的退化则大大削弱了岩石的抗压裂能力。(3) HCl、有机酸和螯合剂的对比分析表明,高温储层受益于低腐蚀性螯合剂(如GLDA)或有机酸体系与低浓度HCl的组合,在确保井筒完整性的同时获得最佳溶解效率。(4)建立了多尺度实验室评价框架,整合实验数据,优化酸配方和酸后压裂策略。本文提供了深层碳酸盐岩储层破碎压力降低的机理、酸体系选择标准和实验方法,为实现安全高效的储层增产提供了重要的工程价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信