Advancing the frontier of artificial intelligence on emerging technologies to redefine cancer diagnosis and care

IF 7 2区 医学 Q1 BIOLOGY
Akanksha Vyas , Krishan Kumar , Ayushi Sharma , Damini Verma , Dhiraj Bhatia , Nitin Wahi , Amit K. Yadav
{"title":"Advancing the frontier of artificial intelligence on emerging technologies to redefine cancer diagnosis and care","authors":"Akanksha Vyas ,&nbsp;Krishan Kumar ,&nbsp;Ayushi Sharma ,&nbsp;Damini Verma ,&nbsp;Dhiraj Bhatia ,&nbsp;Nitin Wahi ,&nbsp;Amit K. Yadav","doi":"10.1016/j.compbiomed.2025.110178","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Artificial Intelligence (AI) is capable of revolutionizing cancer therapy and advancing precision oncology <em>via</em> integrating genomics data and digitized health information. AI applications show promise in cancer prediction, prognosis, and treatment planning, particularly in radiomics, deep learning, and machine learning for early cancer diagnosis. However, widespread adoption requires comprehensive data and clinical validation. While AI has demonstrated advantages in treating common malignancies like lung and breast cancers, challenges remain in managing rare tumors due to limited datasets. AI's role in processing multi-omics data and supporting precision oncology decision-making is critical as genetic and health data become increasingly digitized.</div></div><div><h3>Method</h3><div>This review article presents current knowledge on AI and associated technologies, which are being utilized in the diagnosis and therapy of cancer. The applications of AI in radiomics, deep learning, and machine learning for cancer screening and treatment planning are examined. The study also explores the capabilities and limitations of predictive AI in diagnosis and prognosis, as well as generative AI, such as advanced chatbots, in patient and provider interactions.</div></div><div><h3>Results</h3><div>AI can improve the early diagnosis and treatment of high-incidence cancers like breast and lung cancer. However, its application in rare cancers is limited by insufficient data for training and validation. AI can effectively process large-scale multi-omics data from DNA and RNA sequencing, enhancing precision oncology. Predictive AI aids in risk assessment and prognosis, while generative AI tools improve patient-provider communication. Despite these advancements, further research and technological progress are needed to overcome existing challenges.</div></div><div><h3>Conclusions</h3><div>AI holds transformative potential for cancer therapy, particularly in precision oncology, early detection, and personalized treatment planning. However, challenges such as data limitations in rare cancers, the need for clinical validation, and regulatory considerations must be addressed. Future advancements in AI could significantly improve decision-support systems in oncology, ultimately enhancing patient care and quality of life. The review highlights both the opportunities and obstacles in integrating AI into cancer diagnostics and therapeutics, calling for continued research and regulatory oversight.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 110178"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Artificial Intelligence (AI) is capable of revolutionizing cancer therapy and advancing precision oncology via integrating genomics data and digitized health information. AI applications show promise in cancer prediction, prognosis, and treatment planning, particularly in radiomics, deep learning, and machine learning for early cancer diagnosis. However, widespread adoption requires comprehensive data and clinical validation. While AI has demonstrated advantages in treating common malignancies like lung and breast cancers, challenges remain in managing rare tumors due to limited datasets. AI's role in processing multi-omics data and supporting precision oncology decision-making is critical as genetic and health data become increasingly digitized.

Method

This review article presents current knowledge on AI and associated technologies, which are being utilized in the diagnosis and therapy of cancer. The applications of AI in radiomics, deep learning, and machine learning for cancer screening and treatment planning are examined. The study also explores the capabilities and limitations of predictive AI in diagnosis and prognosis, as well as generative AI, such as advanced chatbots, in patient and provider interactions.

Results

AI can improve the early diagnosis and treatment of high-incidence cancers like breast and lung cancer. However, its application in rare cancers is limited by insufficient data for training and validation. AI can effectively process large-scale multi-omics data from DNA and RNA sequencing, enhancing precision oncology. Predictive AI aids in risk assessment and prognosis, while generative AI tools improve patient-provider communication. Despite these advancements, further research and technological progress are needed to overcome existing challenges.

Conclusions

AI holds transformative potential for cancer therapy, particularly in precision oncology, early detection, and personalized treatment planning. However, challenges such as data limitations in rare cancers, the need for clinical validation, and regulatory considerations must be addressed. Future advancements in AI could significantly improve decision-support systems in oncology, ultimately enhancing patient care and quality of life. The review highlights both the opportunities and obstacles in integrating AI into cancer diagnostics and therapeutics, calling for continued research and regulatory oversight.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信