Physiology and Robustness of Yeasts Exposed to Dynamic pH and Glucose Environments

IF 3.6 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Luca Torello Pianale, Luisa Blöbaum, Alexander Grünberger, Lisbeth Olsson
{"title":"Physiology and Robustness of Yeasts Exposed to Dynamic pH and Glucose Environments","authors":"Luca Torello Pianale,&nbsp;Luisa Blöbaum,&nbsp;Alexander Grünberger,&nbsp;Lisbeth Olsson","doi":"10.1002/bit.28984","DOIUrl":null,"url":null,"abstract":"<p>Gradients negatively affect performance in large-scale bioreactors; however, they are difficult to predict at laboratory scale. Dynamic microfluidics single-cell cultivation (dMSCC) has emerged as an important tool for investigating cell behavior in rapidly changing environments. In the present study, dMSCC, biosensors of intracellular parameters, and robustness quantification were employed to investigate the physiological response of three <i>Saccharomyces cerevisiae</i> strains to substrate and pH changes every 0.75–48 min. All strains showed higher sensitivity to substrate than pH oscillations. Strain-specific intracellular responses included higher relative glycolytic flux and oxidative stress response for strains PE2 and CEN.PK113-7D, respectively. Instead, the Ethanol Red strain displayed the least heterogeneous populations and the highest robustness for multiple functions when exposed to substrate oscillations. This result could arise from a positive trade-off between ATP levels and ATP stability over time. The present study demonstrates the importance of coupling physiological responses to dynamic environments with simultaneous characterization of strains, conditions, individual regimes, and robustness analysis. All these tools are a suitable add-on to traditional evaluation and screening workflows at both laboratory and industrial scale, and can help bridge the gap between these two.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 7","pages":"1656-1668"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28984","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28984","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gradients negatively affect performance in large-scale bioreactors; however, they are difficult to predict at laboratory scale. Dynamic microfluidics single-cell cultivation (dMSCC) has emerged as an important tool for investigating cell behavior in rapidly changing environments. In the present study, dMSCC, biosensors of intracellular parameters, and robustness quantification were employed to investigate the physiological response of three Saccharomyces cerevisiae strains to substrate and pH changes every 0.75–48 min. All strains showed higher sensitivity to substrate than pH oscillations. Strain-specific intracellular responses included higher relative glycolytic flux and oxidative stress response for strains PE2 and CEN.PK113-7D, respectively. Instead, the Ethanol Red strain displayed the least heterogeneous populations and the highest robustness for multiple functions when exposed to substrate oscillations. This result could arise from a positive trade-off between ATP levels and ATP stability over time. The present study demonstrates the importance of coupling physiological responses to dynamic environments with simultaneous characterization of strains, conditions, individual regimes, and robustness analysis. All these tools are a suitable add-on to traditional evaluation and screening workflows at both laboratory and industrial scale, and can help bridge the gap between these two.

Abstract Image

Abstract Image

酵母在动态pH和葡萄糖环境下的生理和稳健性
梯度对大型生物反应器的性能有负面影响;然而,它们很难在实验室规模上进行预测。动态微流体单细胞培养(dMSCC)已成为研究快速变化环境中细胞行为的重要工具。本研究采用dMSCC、胞内参数生物传感器和鲁棒性定量研究了3株酿酒酵母对底物的生理反应和每0.75 ~ 48 min pH值的变化。所有菌株对底物的敏感性均高于pH振荡。菌株特异性细胞内反应包括菌株PE2和CEN较高的相对糖酵解通量和氧化应激反应。分别PK113-7D。相反,乙醇红菌株在暴露于底物振荡时表现出最少的异质性种群和最高的多种功能鲁棒性。这一结果可能源于ATP水平与ATP稳定性之间的积极权衡。目前的研究证明了将生理反应与动态环境相结合的重要性,同时表征菌株、条件、个体制度和鲁棒性分析。所有这些工具都是实验室和工业规模的传统评估和筛选工作流程的合适附加工具,可以帮助弥合两者之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信