Boosting the Selectivity in Oxygen Electrocatalysis Using Chiral Nanoparticles as Electron-Spin Filters

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zixu Wang, Jinling Wan, Xuehao Sun, Lichao Sun, Shengli Chen, Qingfeng Zhang
{"title":"Boosting the Selectivity in Oxygen Electrocatalysis Using Chiral Nanoparticles as Electron-Spin Filters","authors":"Zixu Wang, Jinling Wan, Xuehao Sun, Lichao Sun, Shengli Chen, Qingfeng Zhang","doi":"10.1021/jacs.5c03394","DOIUrl":null,"url":null,"abstract":"Controlling the electron spin of oxygen-containing intermediates is crucial for efficient oxygen electrocatalysis toward clean energy technologies such as fuel cells and water electrolysis. Current strategies for controlling the electron spins rely mainly on tuning the chemical structure of the oxygen electrocatalyst, which is often hardly achieved for metal and oxide electrocatalysts. The chiral-induced spin selectivity (CISS) effect, a significant discovery in chiral spintronics, represents an alternative approach for tuning the spin selectivity of oxygen electrocatalysts. Here we demonstrate the use of intrinsic chiral nanoparticles as electron-spin filters to tune the selectivity in oxygen electrocatalytic reactions. Chiral Au nanoparticles with a concave vortex cube structure were employed as the chiral substrate, exhibiting highly tunable optical chirality and intriguing CISS-like effect. As model systems, the catalytically active components such as Pt or Ni(OH)<sub>2</sub> are overgrown onto chiral Au nanoparticles to construct the chiral hybrid electrocatalysts. Remarkably, both cases show chirality-dependent tunable activities over oxygen reduction/evolution reactions, respectively. The insights gained from this work not only shed light on the underlying mechanisms dictating the CISS-enhanced oxygen electrocatalysis by chiral nanoparticles but also provide an important knowledge framework that guides the rational design of chiral electrocatalysts toward oxygen electrocatalysis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"39 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the electron spin of oxygen-containing intermediates is crucial for efficient oxygen electrocatalysis toward clean energy technologies such as fuel cells and water electrolysis. Current strategies for controlling the electron spins rely mainly on tuning the chemical structure of the oxygen electrocatalyst, which is often hardly achieved for metal and oxide electrocatalysts. The chiral-induced spin selectivity (CISS) effect, a significant discovery in chiral spintronics, represents an alternative approach for tuning the spin selectivity of oxygen electrocatalysts. Here we demonstrate the use of intrinsic chiral nanoparticles as electron-spin filters to tune the selectivity in oxygen electrocatalytic reactions. Chiral Au nanoparticles with a concave vortex cube structure were employed as the chiral substrate, exhibiting highly tunable optical chirality and intriguing CISS-like effect. As model systems, the catalytically active components such as Pt or Ni(OH)2 are overgrown onto chiral Au nanoparticles to construct the chiral hybrid electrocatalysts. Remarkably, both cases show chirality-dependent tunable activities over oxygen reduction/evolution reactions, respectively. The insights gained from this work not only shed light on the underlying mechanisms dictating the CISS-enhanced oxygen electrocatalysis by chiral nanoparticles but also provide an important knowledge framework that guides the rational design of chiral electrocatalysts toward oxygen electrocatalysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信